OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11891–11897

Electromagnetic localization based on transformation optics

Tianrui Zhai, Ying Zhou, Jinwei Shi, Zhaona Wang, Dahe Liu, and Jing Zhou  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11891-11897 (2010)
http://dx.doi.org/10.1364/OE.18.011891


View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Localization of an electromagnetic field can be achieved by transformation optics using metamaterials. A coordinate transformation structure different from traditional resonator is proposed. Wherein, arbitrary frequency of the whole band of electromagnetic wave can be localized without energy loss, i.e., the modes in this structure are continuous. Theoretical analysis and numerical simulation show that the material parameter variations at the outer boundary of the structure have little influence on the localization property. When realizable physical structure is considered, multi-layer approximation should be applied. The calculated results show that the estimated localization time is about 100 ns for an 8-layer inhomogeneous approximation, and it could reach several seconds for a 30-layer homogeneous approximation. The present work may present a new application of transformation optics.

© 2010 OSA

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(160.4760) Materials : Optical properties
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

History
Original Manuscript: April 5, 2010
Revised Manuscript: May 16, 2010
Manuscript Accepted: May 16, 2010
Published: May 20, 2010

Citation
Tianrui Zhai, Ying Zhou, Jinwei Shi, Zhaona Wang, Dahe Liu, and Jing Zhou, "Electromagnetic localization based on transformation optics," Opt. Express 18, 11891-11897 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11891


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ward and J. Pendry, “Refraction and geometry in Maxwell’s equations,” J. Mod. Opt. 43, 773–793 (1996). [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt, “Notes on conformal invisibility devices,” N. J. Phys. 8(7), 118 (2006). [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  6. S. A. Cummer, B. I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 036621 (2006). [CrossRef] [PubMed]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007). [CrossRef]
  8. J. Lee, J. Blair, V. Tamma, Q. Wu, S. Rhee, C. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17(15), 12922–12928 (2009). [CrossRef] [PubMed]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009). [CrossRef] [PubMed]
  11. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009). [CrossRef]
  12. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]
  13. L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3(8), 461–463 (2009). [CrossRef]
  14. B. Zhang and B. I. Wu, “Electromagnetic detection of a perfect invisibility cloak,” Phys. Rev. Lett. 103(24), 243901 (2009). [CrossRef]
  15. L. Zhang, M. Yan, and M. Qiu, “The effect of transformation order on the invisibility performance of a practical cylindrical cloak,” J. Opt. A, Pure Appl. Opt. 10(9), 095001 (2008). [CrossRef]
  16. W. Cai, U. Chettiar, A. Kildishev, V. Shalaev, and G. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91(11), 111105 (2007). [CrossRef]
  17. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Designs for optical cloaking with high-order transformations,” Opt. Express 16(8), 5444–5452 (2008). [CrossRef] [PubMed]
  18. A. Hendi, J. Henn, and U. Leonhardt, “Ambiguities in the scattering tomography for central potentials,” Phys. Rev. Lett. 97(7), 073902 (2006). [CrossRef] [PubMed]
  19. J. Xu and X. Zhang, “Cloaking radiation of moving electron beam and relativistic energy loss spectra,” Opt. Express 17(6), 4758–4772 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited