OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11904–11910

Deformable liquid droplets for optical beam control

Hongwen Ren, Su Xu, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11904-11910 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a liquid droplet whose surface profile can be reshaped by voltage. As the dielectric force increases, the dome of a liquid droplet could touch the top substrate and become flat. While the voltage is removed, the droplet recovers to its original spherical shape. By choosing proper liquids, the required voltage for such a shape change is relatively low and the transition speed is fast. Potential application of such a deformable droplet for optical beam control is discussed.

© 2010 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(220.3630) Optical design and fabrication : Lenses
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Adaptive Optics

Original Manuscript: April 7, 2010
Revised Manuscript: May 18, 2010
Manuscript Accepted: May 18, 2010
Published: May 20, 2010

Hongwen Ren, Su Xu, and Shin-Tson Wu, "Deformable liquid droplets for optical beam control," Opt. Express 18, 11904-11910 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19(14), 1013–1015 (1994). [CrossRef] [PubMed]
  2. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999). [CrossRef] [PubMed]
  3. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, “Polymer-stabilized liquid crystal for tunable microlens applications,” Opt. Express 10(17), 865–870 (2002). [PubMed]
  4. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express 14(23), 11292–11298 (2006). [CrossRef] [PubMed]
  5. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010). [CrossRef] [PubMed]
  6. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003). [CrossRef] [PubMed]
  7. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  8. S. H. Cho, F. S. Tsai, W. Qiao, N. H. Kim, and Y. H. Lo, “Fabrication of aspherical polymer lenses using a tunable liquid-filled mold,” Opt. Lett. 34(5), 605–607 (2009). [CrossRef] [PubMed]
  9. F. Schneider, J. Draheim, R. Kamberger, P. Waibel, and U. Wallrabe, “Optical characterization of adaptive fluidic silicone-membrane lenses,” Opt. Express 17(14), 11813–11821 (2009). [CrossRef] [PubMed]
  10. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111 (2010). [CrossRef]
  11. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008). [CrossRef] [PubMed]
  12. B. Berge and J. Peseux, “Variable focus lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  13. S. Grilli, L. Miccio, V. Vespini, A. Finizio, S. De Nicola, and P. Ferraro, “Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates,” Opt. Express 16(11), 8084–8093 (2008). [CrossRef] [PubMed]
  14. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003). [CrossRef]
  15. S. Kuiper and H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  16. C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express 14(9), 4101–4106 (2006). [CrossRef] [PubMed]
  17. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008). [CrossRef] [PubMed]
  18. H. Ren, D. Ren, and S. T. Wu, “A new method for fabricating high density and large aperture ratio liquid microlens array,” Opt. Express 17(26), 24183–24188 (2009). [CrossRef]
  19. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009). [CrossRef] [PubMed]
  20. H. Ren, S. H. Lee, and S. T. Wu, “Reconfigurable liquid crystal droplet using a dielectric force,” Appl. Phys. Lett. 95(24), 241108 (2009). [CrossRef]
  21. P. Penfield and H. A. Haus, Electrodynamics of Moving Media (MIT, Cambridge, 1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (3400 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited