OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11955–11968

A force detection technique for single-beam optical traps based on direct measurement of light momentum changes

Arnau Farré and Mario Montes-Usategui  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11955-11968 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Despite the tremendous success of force-measuring optical traps in recent years, the calibration methods most commonly used in the field have been plagued with difficulties and limitations. Force sensing based on direct measurement of light momentum changes stands out among these as an exception. Especially significant is this method’s potential for working within living cells, with non-spherical particles or with non-Gaussian beams. However, so far, the technique has only been implemented in counter-propagating dual-beam traps, which are difficult to align and integrate with other microscopy techniques. Here, we show the feasibility of a single-beam gradient-trap system working with a force detection technique based on this same principle.

© 2010 OSA

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(170.1420) Medical optics and biotechnology : Biology
(180.0180) Microscopy : Microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: February 25, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: April 30, 2010
Published: May 21, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Arnau Farré and Mario Montes-Usategui, "A force detection technique for single-beam optical traps based on direct measurement of light momentum changes," Opt. Express 18, 11955-11968 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970), http://prola.aps.org/abstract/PRL/v24/i4/p156_1 . [CrossRef]
  2. M. J. Lang and S. M. Block, “Resource Letter: LBOT-1: Laser-based optical tweezers,” Am. J. Phys. 71(3), 201–215 (2003), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000071000003000201000001&idtype=cvips&gifs=yes . [CrossRef] [PubMed]
  3. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers, (World Scientific, 2006).
  4. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986), http://ol.osa.org/abstract.cfm?uri=ol-11-5-288 . [CrossRef] [PubMed]
  5. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical “cogwheel” tweezers,” Opt. Express 12(17), 4129–4135 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4129 . [CrossRef] [PubMed]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003), http://www.nature.com/nphoton/journal/vsample/nsample/full/nature01935.html . [CrossRef] [PubMed]
  7. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=577338&tag=1 . [CrossRef]
  8. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365(6448), 721–727 (1993), http://www.nature.com/nature/journal/v365/n6448/abs/365721a0.html . [CrossRef] [PubMed]
  9. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996), http://www.sciencemag.org/cgi/content/abstract/271/5250/795 . [CrossRef] [PubMed]
  10. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage straight ϕ29 portal motor can package DNA against a large internal force,” Nature 413(6857), 748–752 (2001), http://www.nature.com/nature/journal/v413/n6857/abs/413748a0.html . [CrossRef] [PubMed]
  11. L. P. Ghislain and W. W. Webb, “Scanning-force microscope based on an optical trap,” Opt. Lett. 18(19), 1678–1680 (1993), http://www.opticsinfobase.org/DirectPDFAccess/74525E7B-BDB9-137E-C5E24E3A219D736D_11961.pdf?da=1&id=11961&seq=0 . [CrossRef] [PubMed]
  12. W. Denk and W. W. Webb, “Optical measurement of picometer displacements of transparent microscopic objects,” Appl. Opt. 29(16), 2382–2391 (1990), http://www.opticsinfobase.org/DirectPDFAccess/7459B57C-BDB9-137E-CF84DFA116D13FB7_38312.pdf?da=1&id=38312&seq=0 . [CrossRef] [PubMed]
  13. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992), http://www.cell.com/biophysj/retrieve/pii/S000634959281860X . [CrossRef] [PubMed]
  14. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996). [CrossRef]
  15. M. Capitanio, D. Maggi, F. Vanzi, and F. S. Pavone, “FIONA in the trap: the advantages of combining optical tweezers and fluorescence,” J. Opt. A, Pure Appl. Opt. 9(8), S157–S163 (2007), http://iopscience.iop.org/1464-4258/9/8/S07/?ejredirect=.iopscience . [CrossRef]
  16. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett. 23(1), 7–9 (1998), http://www.opticsinfobase.org/DirectPDFAccess/7463924C-BDB9-137E-CFB95A10D3C1858A_36510.pdf?da=1&id=36510&seq=0 . [CrossRef]
  17. A. Rohrbach and E. H. K. Stelzer, “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys. 91(8), 5474–5488 (2002), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000091000008005474000001&idtype=cvips&gifs=yes . [CrossRef]
  18. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000075000009002787000001&idtype=cvips&gifs=yes . [CrossRef]
  19. J. P. Rickgauer, D. N. Fuller, and D. E. Smith, “DNA as a metrology standard for length and force measurements with optical tweezers,” Biophys. J. 91(11), 4253–4257 (2006), http://www.cell.com/biophysj/retrieve/pii/S0006349506721397 . [CrossRef] [PubMed]
  20. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73(4), 1687–1696 (2002), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000073000004001687000001&idtype=cvips&gifs=yes . [CrossRef]
  21. D. C. Appleyard, K. Y. Vandermeulen, H. Lee, and M. J. Lang, “Optical trapping for undergraduates,” Am. J. Phys. 75(1), 5–14 (2007), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=AJPIAS000075000001000005000001&idtype=cvips&gifs=yes . [CrossRef]
  22. L. P. Ghislain, N. A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65(9), 2762–2768 (1994), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000065000009002762000001&idtype=cvips&gifs=yes . [CrossRef]
  23. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000075000003000594000001&idtype=cvips&gifs=yes . [CrossRef]
  24. A. Rohrbach, “Switching and measuring a force of 25 femtoNewtons with an optical trap,” Opt. Express 13(24), 9695–9701 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?id=86259 . [CrossRef] [PubMed]
  25. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys., A Mater. Sci. Process. 66(7), S75–S78 (1998), http://www.springerlink.com/content/6x7wx7l2fqrfrhn5 . [CrossRef]
  26. S. F. Tolić-No̸rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000077000010103101000001&idtype=cvips&gifs=yes . [CrossRef]
  27. S. C. Kuo and J. L. McGrath, “Steps and fluctuations of Listeria monocytogenes during actin-based motility,” Nature 407(6807), 1026–1029 (2000), http://www.nature.com/nature/journal/v407/n6807/abs/4071026a0.html . [CrossRef] [PubMed]
  28. P. C. Seitz, E. H. K. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: A phase correction method,” Appl. Opt. 45(28), 7309–7315 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-45-28-7309 . [CrossRef] [PubMed]
  29. A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348(6299), 346–348 (1990), http://www.nature.com/nature/journal/v348/n6299/abs/348346a0.html . [CrossRef] [PubMed]
  30. P. A. Sims and X. S. Xie, “Probing dynein and kinesin stepping with mechanical manipulation in a living cell,” ChemPhysChem 10(9-10), 1511–1516 (2009), http://www3.interscience.wiley.com/journal/122440825/abstract . [CrossRef] [PubMed]
  31. M. Fischer and K. Berg-Sorensen, “Calibration of trapping force and response function of optical tweezers in viscoelastic media,” J. Opt. A, Pure Appl. Opt. 9(8), S239–S250 (2007), http://iopscience.iop.org/1464-4258/9/8/S18/pdf?ejredirect=.iopscience . [CrossRef]
  32. M. Fischer, A. C. Richardson, S. N. S. Reihani, L. B. Oddershede, and K. Berg-So̸rensen, “Active-passive calibration of optical tweezers in viscoelastic media,” Rev. Sci. Instrum. 81(1), 015103 (2010), http://rsi.aip.org/rsinak/v81/i1/p015103_s1 . [CrossRef] [PubMed]
  33. M. Yanai, J. P. Butler, T. Suzuki, H. Sasaki, and H. Higuchi, “Regional rheological differences in locomoting neutrophils,” Am. J. Physiol. Cell Physiol. 287(3), C603–C611 (2004), http://ajpcell.physiology.org/cgi/content/abstract/287/3/C603 . [CrossRef] [PubMed]
  34. S. B. Smith, Y. Cui, and C. Bustamante, “Optical-trap force transducer that operates by direct measurement of light momentum,” Methods Enzymol. 361, 134–162 (2003). [CrossRef] [PubMed]
  35. W. Grange, S. Husale, H.-J. Güntherodt, and M. Hegner, “Optical tweezers system measuring the change in light momentum flux,” Rev. Sci. Instrum. 73(6), 2308–2316 (2002), http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=RSINAK000073000006002308000001&idtype=cvips&gifs=yes . [CrossRef]
  36. M. Montes-Usategui and A. Farré, “Method and apparatus for measuring optical forces acting on a particle,” Patent (application ES200901259).
  37. P. Bartlett and S. Henderson, “Three-dimensional force calibration of a single-beam optical gradient trap,” J. Phys. Condens. Matter 14(33), 7757–7768 (2002), http://iopscience.iop.org/0953-8984/14/33/314/?ejredirect=.iopscience . [CrossRef]
  38. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protocols 2, 3226–3238 (2007), http://www.nature.com/nprot/journal/v2/n12/abs/nprot.2007.446.html . [CrossRef]
  39. K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003), http://jap.aip.org/japiau/v93/i6/p3167_s1 . [CrossRef]
  40. F. Czerwinski, A. C. Richardson, and L. B. Oddershede, “Quantifying noise in optical tweezers by allan variance,” Opt. Express 17(15), 13255–13269 (2009), http://www.opticsinfobase.org/VJBO/abstract.cfm?URI=oe-17-15-13255 . [CrossRef] [PubMed]
  41. J. W. Goodman, Introduction to Fourier optics, 2nd ed., (McGraw-Hill, San Francisco, 1996).
  42. K. von Bieren, “Lens design for optical fourier transform systems,” Appl. Opt. 10(12), 2739–2742 (1971), http://www.opticsinfobase.org/abstract.cfm?URI=ao-10-12-2739 . [CrossRef] [PubMed]
  43. C. J. R. Sheppard and M. Gu, “Imaging by a high aperture optical system,” J. Mod. Opt. 40(8), 1631–1651 (1993), http://www.informaworld.com/smpp/content~db=all~content=a713823939 . [CrossRef]
  44. C. J. Bustamante, and S. B. Smith, “Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis,” US Patent #7133132 (2006).
  45. F. Merenda, G. Boer, J. Rohner, G. Delacrétaz, and R.-P. Salathé, “Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow,” Opt. Express 14(4), 1685–1699 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-4-1685 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (3746 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited