OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11969–11978

Design of rectangular-groove fused-silica gratings as polarizing beam splitters

Qunyu Bi, Jiangjun Zheng, Meizhi Sun, Fuling Zhang, Xinglong Xie, and Zunqi Lin  »View Author Affiliations

Optics Express, Vol. 18, Issue 11, pp. 11969-11978 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of rectangular-groove fused-silica gratings as polarizing beam splitters (PBSs) under Littrow incidence is investigated. Based on the simple modal method, two different cases of PBS gratings are designed. The achieved solutions, which are independent on the incident wavelength, are verified by the rigorous coupled-wave analysis and expressed in several polynomials instead of listing one or two numerical solutions. More importantly, on the basis of the designed PBS gratings, a porous fused silica antireflective film is introduced to improve their performances. Theoretical results indicate that such modified rectangular-groove PBS gratings exhibit higher diffraction efficiencies (over 0.99) and larger spectral bandwidths.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Diffraction and Gratings

Original Manuscript: March 16, 2010
Revised Manuscript: April 15, 2010
Manuscript Accepted: May 10, 2010
Published: May 21, 2010

Qunyu Bi, Jiangjun Zheng, Meizhi Sun, Fuling Zhang, Xinglong Xie, and Zunqi Lin, "Design of rectangular-groove fused-silica gratings as polarizing beam splitters," Opt. Express 18, 11969-11978 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997). [CrossRef] [PubMed]
  2. C. R. A. Lima, L. L. Soares, L. Cescato, and A. L. Gobbi, “Reflecting polarizing beam splitter,” Opt. Lett. 22(4), 203–205 (1997). [CrossRef] [PubMed]
  3. L. B. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30(12), 1434–1436 (2005). [CrossRef] [PubMed]
  4. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings,” Opt. Lett. 21(10), 761–763 (1996). [CrossRef] [PubMed]
  5. D. Yi, Y. B. Yan, H. T. Liu, S. Lu, and G. F. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29(7), 754–756 (2004). [CrossRef] [PubMed]
  6. S. Habraken, O. Michaux, Y. Renotte, and Y. Lion, “Polarizing holographic beam splitter on a photoresist,” Opt. Lett. 20(22), 2348–2350 (1995). [CrossRef] [PubMed]
  7. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215–219 (1999). [CrossRef]
  8. B. Wang, C. H. Zhou, S. Q. Wang, and J. J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32(10), 1299–1301 (2007). [CrossRef] [PubMed]
  9. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22(3), 142–144 (1997). [CrossRef] [PubMed]
  10. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44(16), 3143–3152 (2005). [CrossRef] [PubMed]
  11. R. E. Collin, “Reflection and Transmission at a Slotted Dielectric Interface,” Can. J. Phys. 34, 398–411 (1956). [CrossRef]
  12. S. M. Rytov, “Electromagnetic Properties of a Finely Stratified Medium,” Sov. Phys. JETP 2, 466–475 (1956).
  13. T. Clausnitzer, T. Kampfe, E. B. Kley, A. Tunnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13(26), 10448–10456 (2005). [CrossRef] [PubMed]
  14. T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46(6), 819–826 (2007). [CrossRef] [PubMed]
  15. A. Drauschke, “Analysis of nearly depth-independent transmission of lamellar gratings in zeroth diffraction order in TM polarization,” J. Opt. A 8, 511–517 (2006). [CrossRef]
  16. L. F. Li and C. W. Haggans, “Convergence of the Coupled-Wave Method for Metallic Lamellar Diffraction Gratings,” J. Opt. Soc. Am. A 10(6), 1184–1189 (1993). [CrossRef]
  17. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings - Enhanced Transmittance Matrix Approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  18. J. J. Zheng, C. H. Zhou, J. J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33(14), 1554–1556 (2008). [CrossRef] [PubMed]
  19. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection Effect in Ultrahigh Spatial-Frequency Holographic Relief Gratings,” Appl. Opt. 26(6), 1142–1146 (1987). [CrossRef] [PubMed]
  20. I. M. Thomas, “High laser damage threshold porous silica antireflective coating,” Appl. Opt. 25(9), 1481–1483 (1986). [CrossRef] [PubMed]
  21. P. F. Belleville and H. G. Floch, “Ammonia-hardening of porous silica antireflective coatings,” Proc. SPIE 2288, 25–32 (1994). [CrossRef]
  22. C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells 82(3), 331–344 (2004). [CrossRef]
  23. Y. Tang, H. Xiong, H. Li, and Z. Chen, “Preparation method for a porous SiO2 reducing film with controllable refractive index” (in Chinese) C.N. Patent (2009).
  24. M. Krzyzak, G. Helsch, and G. H. Frischat, “Method of making a glass body with a phosphorous-and porous SiO2-containing coating, glass body made thereby and solution for making same,” U.S.Patent (2006)
  25. M. A. Golub, T. Hutter, and S. Ruschin, “Diffractive optical elements with porous silicon layers,” Appl. Opt. 49(8), 1341–1349 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited