OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 11 — May. 24, 2010
  • pp: 11979–11989

Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators

Gangyi Xu, Raffaele Colombelli, Remy Braive, Gregoire Beaudoin, Luc Le Gratiet, Anne Talneau, Laurence Ferlazzo, and Isabelle Sagnes  »View Author Affiliations


Optics Express, Vol. 18, Issue 11, pp. 11979-11989 (2010)
http://dx.doi.org/10.1364/OE.18.011979


View Full Text Article

Enhanced HTML    Acrobat PDF (1881 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Γ-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is ≈ 15°, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.

© 2010 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 29, 2010
Revised Manuscript: May 3, 2010
Manuscript Accepted: May 3, 2010
Published: May 21, 2010

Citation
Gangyi Xu, Raffaele Colombelli, Remy Braive, Gregoire Beaudoin, Luc Le Gratiet, Anne Talneau, Laurence Ferlazzo, and Isabelle Sagnes, "Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators," Opt. Express 18, 11979-11989 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11979


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, F. Capasso, D. M. Tennant, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum Cascade Photonic-Crystal Surface-Emitting Laser,” Science 302, 1374 (2003). [CrossRef] [PubMed]
  2. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, M. Troccoli, and C. F., “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett. 84, 4164–4166 (2004). [CrossRef]
  3. L. Hua Zhang, “Andrea Dunbar, Giacomo Scalari, Romuald Houdr, and Jrme Faist, ”Terahertz photonic crystal quantum cascade lasers,” Opt. Express 15, 16818–16827 (2007). [CrossRef] [PubMed]
  4. A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express 17, 941–946 (2009). [CrossRef] [PubMed]
  5. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and G. A. Davies, “Electrically pumped photonic crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174 (2009). [CrossRef] [PubMed]
  6. G. Xu, V. Moreau, Y. Chassagneux, A. Bousseksou, R. Colombelli, G. Patriarche, G. Beaudoin, and I. Sagnes, “Surface emitting quantum cascade lasers with metallic photonic-crystal resonators,” Appl. Phys. Lett. 94, 221101 (2009). [CrossRef]
  7. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Graded photonic crystal THz quantum cascade lasers,” Appl. Phys. Lett. 96, 031104 (2010). [CrossRef]
  8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. Khanna, E. Linfield, and A. Davies, “Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers,” Opt. Express 17, 9491 (2009). [CrossRef] [PubMed]
  9. G. Xu, Y. Chassagneux, R. Colombelli, G. Beaudoin, and I. Sagnes, “Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers,” Opt. Lett. 35, 859 (2010). [CrossRef] [PubMed]
  10. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002). [CrossRef]
  11. S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  12. O. Painter, R. Lee, A. Scherer, A. Yariv, J. O’Brien, P. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  13. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, “Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers,” Appl. Phys. Lett. 88, 181103 (2006). [CrossRef]
  14. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites,” J. Opt. Soc. Am. B 15(3), 1155–1159 (1998). [CrossRef]
  15. The finite elements solver Comsol Multiphysics has been employed for the simulations. Bloch-periodic boundary conditions where implemented.
  16. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306 (2002). [CrossRef]
  17. A. Bousseksou, V. Moreau, R. Colombelli, C. Sirtori, G. Patriarche, O. Mauguin, L. Largeau, G. Beaudoin, and I. Sagnes, “Surface-plasmon distributed-feedback mid-infrared quantum cascade lasers based on hybrid plasmon/air-guided modes,” Electron. Lett. 44, 807 (2008). [CrossRef]
  18. K.-H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B 26, 1326–1333 (2008). [CrossRef]
  19. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. Karle, K.-H. Lee, R. Braive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, “Continuous-wave operation of photonic band edge laser near 1.55 m on silicon wafer,” Opt. Express 15, 7551–7556 (2008). [CrossRef]
  20. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef] [PubMed]
  21. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999). [CrossRef]
  22. S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of a wavelength-scale photonic crystal resonator,” Phys. Rev. B 73, 235117 (2006). [CrossRef]
  23. J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal Microcavities,” IEEE J. Quantum Electron. 38, 850 (2002). [CrossRef]
  24. H. Y. Ryu, M. Notomi, and Y. H. Lee, “Finite-difference time-domain investigation of band-edge resonant modes in finite-size two-dimensional photonic crystal slab,” Phys. Rev. B 68, 045209 (2003). [CrossRef]
  25. L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Genner, and C. Sirtori, “Electrically Injected Cavity Polaritons,” Phys. Rev. Lett. 100, 136806 (2008). [CrossRef] [PubMed]
  26. A. Bousseksou, R. Colombelli, A. Babuty, Y. De Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, “A semiconductor laser device for the generation of surface-plasmons upon electrical injection,” Opt. Express 17, 9391 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited