OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12065–12075

3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror

Jingjing Sun, Shuguang Guo, Lei Wu, Lin Liu, Se-Woon Choe, Brian S. Sorg, and Huikai Xie  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12065-12075 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2501 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



3D in vivo optical imaging on a mouse has been obtained using a 2D MEMS mirror for lateral scanning in a time-domain optical coherence tomography (OCT) system. The MEMS mirror aperture size is 1 × 1 mm2, and the device footprint is 2 × 2 mm2. The MEMS mirror scans ± 30° optical angles about both x and y-axis at only 5.5V DC voltage. An endoscopic probe with an outer diameter of 5.8 mm has been designed, manufactured and packaged. The probe scans an average transverse area of 2 mm × 2 mm. The imaging speed of the probe is about 2.5 frames per second, limited by the speed of the employed optical delay line.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 13, 2010
Revised Manuscript: May 13, 2010
Manuscript Accepted: May 18, 2010
Published: May 24, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Jingjing Sun, Shuguang Guo, Lei Wu, Lin Liu, Se-Woon Choe, Brian S. Sorg, and Huikai Xie, "3D In Vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror," Opt. Express 18, 12065-12075 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology 102(2), 217–229 (1995). [PubMed]
  3. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol. 6(2), 89–95 (1995). [PubMed]
  4. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003). [CrossRef] [PubMed]
  5. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992). [CrossRef] [PubMed]
  6. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Technol. 7, 1–9 (2001). [CrossRef] [PubMed]
  7. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001). [CrossRef] [PubMed]
  8. M. C. Pierce, R. L. Sheridan, B. Hyle Park, B. Cense, and J. F. de Boer, “Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography,” Burns 30(6), 511–517 (2004). [CrossRef] [PubMed]
  9. M. V. Sivak, K. Kobayashi, J. A. Izatt, A. M. Rollins, R. Ung-Runyawee, A. Chak, R. C. Wong, G. A. Isenberg, and J. Willis, “High-resolution endoscopic imaging of the GI tract using optical coherence tomography,” Gastrointest. Endosc. 51(4 Pt 1), 474–479 (2000). [CrossRef] [PubMed]
  10. S. Jäckle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schröder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett’s esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32(10), 750–755 (2000). [CrossRef] [PubMed]
  11. X. D. Li, S. A. Boppart, J. Van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitris, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus,” Endoscopy 32(12), 921–930 (2000). [CrossRef]
  12. J. M. Poneros, S. Brand, B. E. Bouma, G. J. Tearney, C. C. Compton, and N. S. Nishioka, “Diagnosis of specialized intestinal metaplasia by optical coherence tomography,” Gastroenterology 120(1), 7–12 (2001). [CrossRef] [PubMed]
  13. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997). [CrossRef] [PubMed]
  14. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1(13), 432–440 (1997). [CrossRef] [PubMed]
  15. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005). [CrossRef] [PubMed]
  16. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004). [CrossRef] [PubMed]
  17. J. Wu, M. Conry, C. Gu, F. Wang, Z. Yaqoob, and C. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006). [CrossRef] [PubMed]
  18. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001). [CrossRef]
  19. H. Xie, Y. Pan, and G. K. Fedder, “Endoscopic opical coherence tomographic imaging with a CMOS MEMS micromirror,” Sens. Actuators, A 103(1-2), 237–241 (2003). [CrossRef]
  20. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett. 29(11), 1236–1238 (2004). [CrossRef] [PubMed]
  21. J. A. Ayers, W. C. Tang, and Z. Chen, “360°Rotating Micro Mirror for Transmitting and Sensing Optical Coherence Tomography Signals,” IEEE Proceedings (2004).
  22. B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc. 65(6), 898–905 (2007). [CrossRef] [PubMed]
  23. D. C. Adler, C. Zhou, T. H. Tsai, H. C. Lee, L. Becker, J. M. Schmitt, Q. Huang, J. G. Fujimoto, and H. Mashimo, “Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation,” Endoscopy 41(9), 773–776 (2009). [CrossRef] [PubMed]
  24. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003). [CrossRef] [PubMed]
  25. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88(16), 163901 (2006). [CrossRef]
  26. A A. D. Aguirre, P. R. Hertz, Y. Chen, J. G. Fujimoto, W. Piyawattanametha, L. Fan, and M. C. Wu, “Two-axis MEMS scanning catheter for ultrahigh resolution three-dimensional and en face Imaging,” Opt. Express 15(5Issue 5), 2445–2453 (2007). [CrossRef] [PubMed]
  27. K. Kumar, K. Hoshino, and X. Zhang, “Handheld subcellular-resolution single-fiber confocal microscope using high-reflectivity two-axis vertical combdrive silicon microscanner,” Biomed. Microdevices 10(5), 653–660 (2008). [CrossRef] [PubMed]
  28. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007). [CrossRef] [PubMed]
  29. J.J. Bernstein, T.W. Lee, F.J. Rogomentich, M.G. Bancu, K.H. Kim, G. Maguluri, B.E. Bouma, and J.F. DeBoer, “Magnetic two-axis micromirror for 3D OCT endoscopy,” Technical Digest of Solid-State Sensors, Actuators, and Microsystems Workshop (Hilton Head 2006), Hilton Head Island, SC, June 4–8, 2006, pp. 7–10.
  30. D. Hah, S. Huang, H. Hguyen, H. Chang, and M.C. Wu, “A low voltage, large scan angle MEMS micromirror array with hidden vertical comb-drive actuation for WDM routers,” Optical Fiber Communication Conference and Exhibit, (2002).
  31. J. Tsai, S. Chiou, T. Hsieh, C. Sun, D. Hah, and M. D. Wu, “Vertical combdrive actuators-design, theoretical analysis, and fabrication,” J. Opt. A, Pure Appl. Opt. 10, 044006 (2008). [CrossRef]
  32. A. Jain, A. Kopa, Y. Pan, G. K. Fedder, and H. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10, 636–642 (2004). [CrossRef]
  33. A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage, large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005). [CrossRef]
  34. L. Wu and H. Xie, “A large vertical displacement electrothermal bimorph microactuator with very small lateral shift,” Sens. Actuators, A 145–146, 371–379 (2008).
  35. S. Schweizer, S. Calmes, M. Laudon, and Ph. Renaud, “Thermally actuated optical microscanner with large angle and low consumption,” Sens. Actuators 76(1-3), 470–477 (1999). [CrossRef]
  36. J. P. Yang, X. C. Deng, and T. C. Chong, “An electro-thermal bimorph-based microactuator for precise track-positioning of optical disk drives,” J. Micromech. Microeng. 15(5), 958–965 (2005). [CrossRef]
  37. S. Schweizer, P. Cousseau, G. Lammel, S. Calmes, and Ph. Renaud, “Two-dimensional thermally actuated optical microprojector,” Sens. Actuators 85(1-3), 424–429 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited