OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12119–12126

Anomalous reflection from hybrid metamaterial slab

Zeyong Wei, Hongqiang Li, Chao Wu, Yang Cao, Jinzhi Ren, Zhihong Hang, Hong Chen, Daozhong Zhang, and C. T. Chan  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12119-12126 (2010)
http://dx.doi.org/10.1364/OE.18.012119


View Full Text Article

Enhanced HTML    Acrobat PDF (2010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report for the first time that an ultra-thin hybrid metamaterial slab can reflect an incident plane wave in −1st diffraction order, giving rise to anomalous reflection in a “negative” way. The functionality is derived from the hybridized surface resonant states of the slab. The retro-directive reflection is demonstrated numerically for a Gaussian beam at oblique incidence and verified experimentally at microwave frequencies.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6690) Optics at surfaces : Surface waves
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: April 16, 2010
Revised Manuscript: May 20, 2010
Manuscript Accepted: May 20, 2010
Published: May 24, 2010

Citation
Zeyong Wei, Hongqiang Li, Chao Wu, Yang Cao, Jinzhi Ren, Zhihong Hang, Hong Chen, Daozhong Zhang, and C. T. Chan, "Anomalous reflection from hybrid metamaterial slab," Opt. Express 18, 12119-12126 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, Oxford, Angleterre, 1980).
  2. M. Mansuripur, Classical Optics and its Applications (Cambridge University Press, 2002).
  3. D. Maystre, “Photonic crystal diffraction gratings,” Opt. Express 8(3), 209–216 (2001). [CrossRef] [PubMed]
  4. G. von Freymann, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gosele, “Diffraction properties of two-dimensional photonic crystals,” Appl. Phys. Lett. 83(4), 614–616 (2003). [CrossRef]
  5. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, “Influence of surface termination on negative reflection by photonic crystals,” Opt. Express 15(11), 6605–6611 (2007). [CrossRef] [PubMed]
  6. N. Engheta, and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons., 2006).
  7. D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech. 47(11), 2059–2074 (1999). [CrossRef]
  8. M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave surface-plasmon-like modes on thin metamaterials,” Phys. Rev. Lett. 102(7), 073901 (2009). [CrossRef] [PubMed]
  9. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92(14), 143904 (2004). [CrossRef] [PubMed]
  10. A. Hibbins, W. Murray, J. Tyler, S. Wedge, W. Barnes, and J. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006). [CrossRef]
  11. J. Brown, A. Hibbins, M. Lockyear, C. Lawrence, and J. Sambles, “Angle-independent microwave absorption by ultrathin microcavity arrays,” J. Appl. Phys. 104(4), 043105 (2008). [CrossRef]
  12. M. Diem, T. Koschny, and C. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  13. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935). [CrossRef]
  14. The transverse electric (TE) polarized incident wave with the electric field E//x is blind to the air gaps between the metallic strips`, and treats the whole structure as a homogeneous dielectric slab with PEC ground effectively.
  15. P. Rayleigh, “On the Dynamical Theory of Gratings,” R. Soc. London Ser. A 79(532), 399–416 (1907). [CrossRef]
  16. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982). [CrossRef]
  17. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A-Pure Appl. Opt . 2, 48–51 (2000). [CrossRef]
  18. Z. Wei, J. Fu, Y. Cao, C. Wu, and H. Li, “The impact of local resonance on the enhanced transmission and dispersion of surface resonances,” Photon. Nanostruct.: Fundam. Appl. 8(2), 94–101 (2010). [CrossRef]
  19. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited