OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12127–12135

Silicon-on-sapphire integrated waveguides for the mid-infrared

Tom Baehr-Jones, Alexander Spott, Rob Ilic, Andrew Spott, Boyan Penkov, William Asher, and Michael Hochberg  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12127-12135 (2010)
http://dx.doi.org/10.1364/OE.18.012127


View Full Text Article

Enhanced HTML    Acrobat PDF (883 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon waveguides are now widely used to guide radiation in the near-infrared, mainly in the wavelength range of 1.1 – 2.2 µm. While low-loss waveguides at longer wavelengths in silicon have been proposed, experimental realization has been elusive. Here we show that single-mode integrated silicon-on-sapphire waveguides can be used at mid-infrared wavelengths. We demonstrate waveguiding at 4.5 µm, or 2222.2 cm−1, with losses of 4.3 ± 0.6 dB/cm. This result represents the first practical integrated waveguide system for the mid-infrared in silicon, and enables a range of new applications.

© 2010 OSA

OCIS Codes
(130.3060) Integrated optics : Infrared
(130.3130) Integrated optics : Integrated optics materials

ToC Category:
Integrated Optics

History
Original Manuscript: April 20, 2010
Revised Manuscript: May 18, 2010
Manuscript Accepted: May 19, 2010
Published: May 24, 2010

Citation
Tom Baehr-Jones, Alexander Spott, Rob Ilic, Andrew Spott, Boyan Penkov, William Asher, and Michael Hochberg, "Silicon-on-sapphire integrated waveguides for the mid-infrared," Opt. Express 18, 12127-12135 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12127


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Liu, L. Liao, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide,” Semicond. Sci. Technol. 23(6), 064001 (2008). [CrossRef]
  2. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  3. A. Huang, C. Gunn, G.-L. Li, Y. Liang, S. Mirsaidi, A. Narasimha, and T. Pinguet, “A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13μm SOI CMOS,” in International Solid-State Circuits Conference (IEEE, 2006), pp. 24–25.
  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009). [CrossRef]
  5. A. Ramachandran, S. Wang, J. Clarke, S. J. Ja, D. Goad, L. Wald, E. M. Flood, E. Knobbe, J. V. Hryniewicz, S. T. Chu, D. Gill, W. Chen, O. King, and B. E. Little, “A universal biosensing platform based on optical micro-ring resonators,” Biosens. Bioelectron. 23(7), 939–944 (2008). [CrossRef]
  6. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  7. M. Lipson, “Guiding, Modulating and Emitting Light on Silicon – Challenges and Opportunities,” IEEE J. Lightwave Tech. 23(12), 4222–4238 (2005). [CrossRef]
  8. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Broadband mid-infrared parametric amplification, net off-chip gain, and cascaded four-wave mixing in silicon photonic wires,” in Group IV Photonics (IEEE, 2009).
  9. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt. 8(10), 840–848 (2006). [CrossRef]
  10. G. C. Holst, and S. W. McHugh, “Review of thermal imaging system performance,” in Proceedings of SPIE (SPIE 1992), pp. 78–84.
  11. H. B. Gray, Chemical Bonds: An Introduction to Atomic and Molecular Structure (University Science Books, 1994).
  12. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009). [CrossRef] [PubMed]
  13. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]
  14. The Federation of American Scientists, “AN/AAQ-24 Directional Infrared Countermeasures (DIRCM),” http://www.fas.org/man/dod-101/sys/ac/equip/an-aaq-24.htm .
  15. F. Rotermund, V. Petrov, and F. Noack, “Difference-frequency generation of intense femtosecond pulses in the mid-IR using HgGa2S4 and AgGaS2,” Opt. Commun. 185(1-3), 177–183 (2000). [CrossRef]
  16. M. Tacke, “Lead-salt lasers,” Philosophical Transactions: Mathematical, Physical and Engineering Sciences 359(1780), 547–566 (2001). [CrossRef]
  17. J. Piotrowski and A. Rogalski, “New generation of infrared photodetectors,”, Sensors Act. A 67(1-3), 146–152 (1998). [CrossRef]
  18. Alpes Lasers, “Lasers In Stock,” http://www.alpeslasers.com/lasers-on-stock/index.html .
  19. A. Lyakh, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 µm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  20. IRPhotonics, “Single Mode Infrared Fiber,” http://www.iguide-irphotonics.com/en/products/single-mode-infrared-fiber.html .
  21. E. M. Dianov, “Single-Mode As-S Glass Fibers,” Inorg. Mater. 39(6), 627–630 (2003). [CrossRef]
  22. Boston Electronics, “Infrared Detectors,” http://www.boselec.com/products/detir.html .
  23. R. A. Johnson, P. R. de la Houssaye, C. E. Chang, P. F. Chen, M. E. Wood, G. A. Garcia, I. Lagnado, and P. M. Asbeck, “Advanced Thin-Film Silicon-on-Sapphire Technology: Microwave Circuit Applications,” IEEE Trans. Electron. Dev. 45(5), 1047–1054 (1998). [CrossRef]
  24. R. Soref and B. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  25. P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron. 20(S1), 159–163 (2009). [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  27. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  28. R. Hu, D. Dai, and S. He, “A Small Polymeric Ridge Waveguide With a High Index Contrast,” IEEE J. Lightwave Tech. 26(13), 1964–1968 (2008). [CrossRef]
  29. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991). [CrossRef]
  30. T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express 16(3), 1659–1668 (2008). [CrossRef] [PubMed]
  31. A. W. Fang, M. N. Sysak, B. R. Koch, R. Jones, E. Lively, Y. H. Kuo, D. Liang, O. Raday, and J. E. Bowers, “Single-Wavelength Silicon Evanescent Lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 535–544 (2009). [CrossRef]
  32. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited