OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12168–12175

Imprinted terahertz artificial dielectric quarter wave plates

Shimul C. Saha, Yong Ma, James P. Grant, A. Khalid, and David R.S. Cumming  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12168-12175 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed low-loss polymer artificial dielectric quarter wave plates (QWP) operating at 2.6, 3.2 and 3.8 THz. The QWPs are imprinted on high density polyethylene (HDPE) using silicon masters. The grating period for the quarter wave plates is 60 µm. 330 µm, 280 μm and 230 μm deep gratings are used to obtain a π/2 phase retardance between TE and TM polarization propagating through the QWPs. High frequency structure simulator (HFSS) was used to optimize the grating depth. Since the required grating depth is high, two plates, fixed in a back-to-back configuration were used for each QWP. A maximum aspect ratio (grating height/grating width) of 6.6 was used.

© 2010 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(260.1440) Physical optics : Birefringence
(260.3090) Physical optics : Infrared, far

ToC Category:
Diffraction and Gratings

Original Manuscript: March 15, 2010
Revised Manuscript: May 4, 2010
Manuscript Accepted: May 4, 2010
Published: May 25, 2010

Shimul C. Saha, Yong Ma, James P. Grant, A. Khalid, and David R. S. Cumming, "Imprinted terahertz artificial dielectric quarter wave plates," Opt. Express 18, 12168-12175 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Petkie, C. Casto, F. C. De Lucia, S. R. Murrill, B. Redman, R. L. Espinola, C. C. Franck, E. L. Jacobs, S. T. Griffin, C. E. Halford, J. Reynolds, S. O’Brien, and D. Tofsted, “Active and Passive imaging in the THz spectral region: phenomenonlogy, dynamic range, modes and illumination,” J. Opt. Soc. Am. B 25(9), 1523–1531 (2008). [CrossRef]
  2. R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, and T. Kürner, “Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments,” IEEE J. Sel. Top. Quantum Electron. 14(2), 421–430 (2008). [CrossRef]
  3. T. D. Drysdale, R. J. Blaikie, H. M. Chong, and D. R. S. Cumming, “Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths,” IEEE Trans. Antenn. Propag. 51(11), 3072–3079 (2003). [CrossRef]
  4. E. D. Walsby, J. Alton, C. Worrall, H. E. Beere, D. A. Ritchie, and D. R. S. Cumming, “Imprinted diffractive optics for terahertz radiation,” Opt. Lett. 32(9), 1141–1143 (2007). [CrossRef] [PubMed]
  5. Y. Ma, A. Khalid, T. D. Drysdale, and D. R. S. Cumming, “Direct fabrication of terahertz optical devices on low-absorption polymer substrates,” Opt. Lett. 34(10), 1555–1557 (2009). [CrossRef] [PubMed]
  6. A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K,” Nat. Photonics 3(1), 41–45 (2009). [CrossRef]
  7. M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz using nonlinear parametric upconversion,” Opt. Lett. 33(23), 2725–2727 (2008). [CrossRef] [PubMed]
  8. A. H. F. van Vliet and T. de Graauw, “Quarter wave plate for sub-millimetre wavelengths,” Int. J. Infrared Millim. Waves 2(3), 465–477 (1981). [CrossRef]
  9. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16(21), 16334–16342 (2008). [CrossRef] [PubMed]
  10. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006). [CrossRef] [PubMed]
  11. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: A new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351(40-42), 3341–3346 (2005). [CrossRef]
  12. W. Frank, “Far-infrared spectrum of irradiated polyethylene,” Polymer. Letters. Edition. 15(11), 679–682 (1977). [CrossRef]
  13. G. Chantry, J. Fleming, P. Smith, M. Cudby, and H. Willis, “Far infrared and millimeter-wave absorption spectra of some low-loss polymers,” Chem. Phys. Lett. 10(4), 473–477 (1971). [CrossRef]
  14. D. Raguin and G. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32(14), 2582–2598 (1993). [CrossRef] [PubMed]
  15. W. Liao and S. Hsu, “High aspect ratio pattern transfer in imprint lithography using a hybrid mold,” J. Vac. Sci. Technol. B 22(6), 2764–2767 (2004). [CrossRef]
  16. B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  17. H. F. S. S. Ansoft, v11 from Ansys Inc ( www.ansoft.com , 10.08.2009).
  18. S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-Loss Terahertz Artificial Dielectric Birefringent Quarter-Wave Plates,” J. IEEE PTL 22(2), 79–81 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited