OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12176–12184

Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers

Gary Shambat, Kelley Rivoire, Jesse Lu, Fariba Hatami, and Jelena Vučković  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12176-12184 (2010)
http://dx.doi.org/10.1364/OE.18.012176


View Full Text Article

Enhanced HTML    Acrobat PDF (1152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate up to 30 nm tuning of gallium phosphide photonic crystal cavities resonances at ~1.5 μm using a tapered optical fiber. The tuning is achieved through a combination of near-field perturbations and mechanical deformation of the membrane, both induced by the fiber probe. By exploiting this effect, we show fiber-coupled second harmonic generation with a tuning range of nearly 10 nm at the second harmonic wavelength of ~750 nm. By scaling cavity parameters, the signal could easily be shifted into other parts of the visible spectrum.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.5750) Optical devices : Resonators
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 17, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: May 18, 2010
Published: May 25, 2010

Citation
Gary Shambat, Kelley Rivoire, Jesse Lu, Fariba Hatami, and Jelena Vučković, "Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers," Opt. Express 18, 12176-12184 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  2. D. Englund, B. Ellis, E. Edwards, T. Sarmiento, J. S. Harris, D. A. B. Miller, and J. Vuckovic, “Electrically controlled modulation in a photonic crystal nanocavity,” Opt. Express 17(18), 15409–15419 (2009). [CrossRef] [PubMed]
  3. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  4. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vucković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450(7171), 857–861 (2007). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  6. A. Faraon and J. Vuckovic, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009). [CrossRef]
  7. D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes,” Appl. Phys. Lett. 87(15), 151107 (2005). [CrossRef]
  8. G. Le Gac, A. Rahmani, C. Seassal, E. Picard, E. Hadji, and S. Callard, “Tuning of an active photonic crystal cavity by an hybrid silica/silicon near-field probe,” Opt. Express 17(24), 21672–21679 (2009). [CrossRef] [PubMed]
  9. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008). [CrossRef]
  10. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y.-H. Lee, “Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots,” Opt. Express 16(13), 9829–9837 (2008). [CrossRef] [PubMed]
  11. G. Shambat, Y. Gong, J. Lu, S. Yerci, R. Li, L. Dal Negro, and J. Vucković, “Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities,” Opt. Express 18(6), 5964–5973 (2010). [CrossRef] [PubMed]
  12. J.-Y. Kim, M.-K. Kim, M.-K. Seo, S.-H. Kwon, J.-H. Shin, and Y.-H. Lee, “Two-dimensionally relocatable microfiber-coupled photonic crystal resonator,” Opt. Express 17(15), 13009–13016 (2009). [CrossRef] [PubMed]
  13. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009). [CrossRef]
  14. T. A. Birks and Y. W. Li, “The Shape of Fiber Tapers,” J. Lightwave Technol. 10(4), 432–438 (1992). [CrossRef]
  15. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008). [CrossRef]
  16. M. Kim, J. Yang, Y. Lee, and I. Hwang, “Influence of etching slope on two-dimensional photonic crystal slab resonators,” J. Korean Phys. Soc. 50(4), 1027–1031 (2007). [CrossRef]
  17. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004). [CrossRef]
  18. T. Zander, A. Herklotz, S. Kiravittaya, M. Benyoucef, F. Ding, P. Atkinson, S. Kumar, J. D. Plumhof, K. Dörr, A. Rastelli, and O. G. Schmidt, “Epitaxial quantum dots in stretchable optical microcavities,” Opt. Express 17(25), 22452–22461 (2009). [CrossRef]
  19. E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Dielectric materials for electrooptic, elastooptic, and ultrasonic device applications,” Proc. IEEE 55(12), 2074–2108 (1967). [CrossRef]
  20. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967). [CrossRef]
  21. I. Fushman, E. Waks, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Ultrafast nonlinear optical tuning of photonic crystal cavities,” Appl. Phys. Lett. 90(9), 091118 (2007). [CrossRef]
  22. H. Altug and J. Vucković, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982–984 (2005). [CrossRef] [PubMed]
  23. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add–drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  24. M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007). [CrossRef] [PubMed]
  25. K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, L. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95(12), 123113 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited