OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12197–12202

Improved bending property of half-filled photonic crystal fiber

Yiping Wang, Xiaoling Tan, Wei Jin, Shujing Liu, Diqing Ying, and Yeuk Lai Hoo  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12197-12202 (2010)
http://dx.doi.org/10.1364/OE.18.012197


View Full Text Article

Enhanced HTML    Acrobat PDF (1119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A half-filling technique was demonstrated to improve the bending properties of a fluid-filled photonic crystal fiber. Such a technique can realize to fill selectively a fluid into half of air holes in a PCF. The bending properties of the half-filled PCF are quite different from those of the fully-filled PCF. Distinct bending properties were observed when the half-filled PCF was bent toward different fiber orientations. Especially, the transmission spectrum of the half-filled PCF was hardly affected while the fiber was bent toward the filled-hole orientation.

© 2010 OSA

OCIS Codes
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 4, 2010
Revised Manuscript: April 1, 2010
Manuscript Accepted: April 2, 2010
Published: May 25, 2010

Citation
Yiping Wang, Xiaoling Tan, Wei Jin, Shujing Liu, Diqing Ying, and Yeuk Lai Hoo, "Improved bending property of half-filled photonic crystal fiber," Opt. Express 18, 12197-12202 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001). [CrossRef] [PubMed]
  2. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference and Exhibit, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002) 466–468 (2002).
  3. Y. Wang, X. Tan, W. Jin, D. Ying, Y. L. Hoo, and S. Liu, “Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications,” Opt. Lett. 35(1), 88–90 (2010). [CrossRef] [PubMed]
  4. J. Lægsgaard and T. T. Alkeskjold, “Designing a photonic bandgap fiber for thermo-optic switching,” J. Opt. Soc. Am. B 23(5), 951–957 (2006). [CrossRef]
  5. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003). [CrossRef] [PubMed]
  6. Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, R. Willsch, J. Kobelke, M. Rothhardt, L. Shan, and S. Brueckner, “Optical switch based on a fluid-filled photonic crystal fiber Bragg grating,” Opt. Lett. 34(23), 3683–3685 (2009). [CrossRef] [PubMed]
  7. Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, R. Spittel, L. Shan, S. Brueckner, W. Jin, X. Tan, and L. Jin, “Thermo-optic switching effect based on fluid-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(3), 164–166 (2010). [CrossRef]
  8. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, “Tuning properties of long period gratings in photonic bandgap fibers,” Opt. Lett. 31(14), 2103–2105 (2006). [CrossRef] [PubMed]
  9. T. B. Iredale, P. Steinvurzel, and B. J. Eggleton, “Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre,” Electron. Lett. 42(13), 739–740 (2006). [CrossRef]
  10. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett. 79(19), 3191–3193 (2001). [CrossRef]
  11. C.-P. Yu, J.-H. Liou, S.-S. Huang, and H.-C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16(7), 4443–4451 (2008). [CrossRef] [PubMed]
  12. A. Sharkawy, D. Pustai, S. Shi, D. Prather, S. McBride, and P. Zanzucchi, “Modulating dispersion properties of low index photonic crystal structures using microfluidics,” Opt. Express 13(8), 2814–2827 (2005). [CrossRef] [PubMed]
  13. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, “Bend loss in all-solid bandgap fibres,” Opt. Express 14(12), 5688–5698 (2006). [CrossRef] [PubMed]
  14. A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, and P. St J Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13(7), 2503–2511 (2005). [CrossRef] [PubMed]
  15. G. Ren, P. Shum, L. Zhang, M. Yan, X. Yu, W. Tong, and J. Luo, “Design of all-solid bandgap fiber with improved confinement and bend losses,” IEEE Photon. Technol. Lett. 18(24), 2560–2562 (2006). [CrossRef]
  16. T. Murao, K. Saitoh, and M. Koshiba, “Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers,” Opt. Express 17(9), 7615–7629 (2009). [CrossRef] [PubMed]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27(10), 842–844 (2002). [CrossRef]
  18. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004). [CrossRef]
  19. K. Nielsen, D. Noordegraaf, T. Sorensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7(8), L13–L20 (2005). [CrossRef]
  20. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core photonic bandgap fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009). [CrossRef]
  21. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  22. S. Liu, L. Jin, W. Jin, D. Wang, C. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010). [CrossRef] [PubMed]
  23. Y. Wang, H. Bartelt, S. Brueckner, J. Kobelke, M. Rothhardt, K. Mörl, W. Ecke, and R. Willsch, “Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters,” Opt. Express 16(10), 7258–7263 (2008). [CrossRef] [PubMed]
  24. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16(4), 2784–2790 (2008). [CrossRef] [PubMed]
  25. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007). [CrossRef]
  26. Y. Wang, H. Bartelt, W. Ecke, R. Willsch, J. Kobelke, M. Kautz, S. Brueckner, and M. Rothhardt, “Sensing properties of fiber Bragg gratings in small-core Ge-doped photonic crystal fibers,” Opt. Commun. 282(6), 1129–1134 (2009). [CrossRef]
  27. L. Xiao, W. Jin, and M. S. Demokan, “Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs,” Opt. Express 15(24), 15637–15647 (2007). [CrossRef] [PubMed]
  28. Y.-P. Wang and Y.-J. Rao, “A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously,” IEEE Sens. J. 5(5), 839–843 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited