OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12239–12248

An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride

Chia-Chu Chen and John F. Whitaker  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12239-12248 (2010)
http://dx.doi.org/10.1364/OE.18.012239


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A single <110> cadmium-manganese-telluride crystal that exhibits both the Pockels and Faraday effects is used to produce a Poynting-vector sensor for signals in the microwave regime. This multi-birefringent crystal can independently measure either electric or magnetic fields through control of the polarization of the optical probe beam. After obtaining all the relevant electric and magnetic field components, a map of the Poynting vector along a 50-Ω microstrip was experimentally determined without the need for any further transformational calculations. The results demonstrate that this sensor can be used for near-field mapping of the Poynting vector. Utilizing both amplitude and phase information from the fields in the microwave signal, it was confirmed for the case of an open-terminated microstrip that no energy flowed to the load, while for a microstrip with a matched termination, the energy flowed consistently along the transmission line.

© 2010 OSA

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Sensors

History
Original Manuscript: April 9, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 13, 2010
Published: May 25, 2010

Citation
Chia-Chu Chen and John F. Whitaker, "An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride," Opt. Express 18, 12239-12248 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett. 33(8), 848–850 (2008). [CrossRef] [PubMed]
  2. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express 17(5), 3826–3834 (2009). [CrossRef] [PubMed]
  3. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003). [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  5. R. S. Schechter and S. T. Chun, “Large finite-difference time domain simulations of a left-handed metamaterial lens with wires and resonators,” Appl. Phys. Lett. 91(15), 154102 (2007). [CrossRef]
  6. M. Sigalov, E. O. Kamenetskii, and R. Shavit, “Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk,” Phys. Lett. A 372, 91–97 (2008).
  7. C.-L. Zou, Y. Yang, Y.-F. Xiao, C.-H. Dong, Z.-F. Han, and G.-C. Guo, “Accurately calculating high quality factor of whispering-gallery modes with boundary element method,” J. Opt. Soc. Am. B 26(11), 2050–2053 (2009). [CrossRef]
  8. S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, “Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications,” Appl. Phys. Lett. 93(26), 261103 (2008). [CrossRef]
  9. F. Sumiyoshi, A. Kawagoe, M. Tokuda, and S. Kaminohara, “A Quench Monitoring System of Superconducting Coils by Using the Poynting Vector Method,” IEEE. Trans. Appl. Supercon. 19(3), 2341–2344 (2009). [CrossRef]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express 15(19), 11781–11789 (2007). [CrossRef] [PubMed]
  11. H. Hirayama, H. Kondo, N. Kikuma, and K. Sakakibara, “Visualization of emission from bend of a transmission line with Poynting vector and wave-number vector,” in Electromagnetic Compatibility - EMC Europe, 2008 International Symposium on(2008), pp. 1–4.
  12. E. Suzuki, S. Arakawa, M. Takahashi, H. Ota, K. I. Arai, and R. Sato, “Visualization of Poynting Vectors by Using Electro-Optic Probes for Electromagnetic Fields,” IEEE Trans. Instrum. Measurement, 57(5), 1014–1022 (2008). [CrossRef]
  13. K. Ando, H. Saito, V. Zayets, and M. C. Debnath, “Optical properties and functions of dilute magnetic semiconductors,” J. Phys. Condens. Matter 16(48), S5541–S5548 (2004). [CrossRef]
  14. B. Krichevtsov, “Anisotropy of the linear and quadratic magnetic birefringence in rare-earth semiconductors (γ-Ln2S3 (Ln=Dy3+, Pr3+, Gd3+, La3+),” J. Exp. Theor. Phys. 92(5), 830–839 (2001). [CrossRef]
  15. C.-C. Chen and J. F. Whitaker, “Combined nonlinear-optical electric and magnetic field response in a cadmium manganese telluride crystal,” Appl. Phys. Lett. 92(10), 101119–101113 (2008). [CrossRef]
  16. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68(21), 2924–2926 (1996). [CrossRef]
  17. J. A. Riordan, F. G. Sun, Z. G. Lu, and X.-C. Zhang, “Free-space transient magneto-optic sampling,” Appl. Phys. Lett. 71(11), 1452–1454 (1997). [CrossRef]
  18. Q. Zhan, “Magnetic field distribution of a highly focused radially-polarized light beam: comment,” Opt. Express 18(2), 765–766 (2010). [CrossRef] [PubMed]
  19. K. Yang, G. David, S. V. Robertson, J. F. Whitaker, and L. P. B. Katehi, “Electrooptic mapping of near-field distributions in integrated microwave circuits,” IEEE Trans. Microwave Theory Techn. 46(12), 2338–2343 (1998). [CrossRef]
  20. R. M. Reano, Y. Kyoung, L. P. B. Katehi, and J. F. Whitaker, “Simultaneous measurements of electric and thermal fields utilizing an electrooptic semiconductor probe,” IEEE Trans. Microwave Theory Techn. 49(12), 2523–2531 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited