OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12269–12276

Elimination of phase singularity to achieve superresolution in lossy metamaterials

Kwangchil Lee, Youngjean Jung, Willie J. Padilla, and Kyoungsik Kim  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12269-12276 (2010)
http://dx.doi.org/10.1364/OE.18.012269


View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The presence of absorption losses softens the singular behavior of transmission resonances and leads to a good image in spite of limited effective spatial frequency range. Nonetheless, we found that the phase singularity does not disappear despite the considerably reduced retardation effects by softening the transmission resonances. Because the phase singularity severely deteriorates the ideal image reconstruction, broad transmission bandwidth in spatial frequency domain is not sufficient enough to achieve superresolution in TiO2 thin film lens. The present work predicts successful elimination of the phase singularity and the achievement of ~ λ/12.9 superresolution in TiO2 thin film lens through the phase correction method.

© 2010 Optical Society of America

OCIS Codes
(110.4850) Imaging systems : Optical transfer functions
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:
Imaging Systems

History
Original Manuscript: April 7, 2010
Manuscript Accepted: May 11, 2010
Published: May 25, 2010

Citation
Kwangchil Lee, Youngjean Jung, Willie J. Padilla, and Kyoungsik Kim, "Elimination of phase singularity to achieve superresolution in lossy metamaterials," Opt. Express 18, 12269-12276 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  4. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595 (2006). [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  6. X. Yang, Y. Liu, J. Ma, J. Cui, H. Xing, W. Wang, C. Wang, and X. Luo, "Broadband super-resolution imaging by a superlens with unmatched dielectric medium," Opt. Express 16, 19686-19694 (2008), http://www. opticsinfobase.org/abstract.cfm?uri=oe-16-24-19686. [CrossRef] [PubMed]
  7. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  8. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002). [CrossRef] [PubMed]
  9. R. J. Blaikie and S. J. McNab, "Simulation study of ‘perfect lenses’ for near-field optical nanolithography," Microelectron. Eng. 61-62, 97-103 (2002).
  10. A. Grbic, L. Jiang, and R. Merlin, "Near-field plates: subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008). [CrossRef] [PubMed]
  11. L. Markley, A. M. H. Wong, Y. Wang, and G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008). [CrossRef] [PubMed]
  12. K. Lee, H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Opt. Express 16, 1711-1718 (2008), http://www.opticsinfobase.org/ abstract.cfm?URI=OE-16-3-1711. [CrossRef] [PubMed]
  13. K. Lee, Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett. 94, 101113 (2009). [CrossRef]
  14. K. Lee, Y. Jung, and K. Kim, "Near-field phase correction for superresolution enhancement," Phys. Rev. B 80, 033109 (2009). [CrossRef]
  15. D. Korobkin, Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006). [CrossRef]
  16. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002). [CrossRef]
  17. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  18. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  19. D. O. S. Melville and R. J. Blaikie, "Analysis and optimization of multilayer silver superlenses for near-field optical lithography," Physica B 394, 197-202 (2007).
  20. E. D. Palik, Handbook of optical constants of solids (Academic, New York, 1985)
  21. F. Gervais and B. Piriou, "Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)," Phys. Rev. B 10, 1642-1654 (1974). [CrossRef]
  22. C. P. Moore, M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," J. Opt. Soc. Am. A 25, 911-918 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited