OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12277–12282

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing

Feng Xiao and Kamal Alameh  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12277-12282 (2010)
http://dx.doi.org/10.1364/OE.18.012277


View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate the principle of a novel adaptive wavelength division multiplexer/demultiplexer structure based on Opto-VLSI processing. By driving an Opto-VLSI processor with an appropriate phase hologram, optical signals of arbitrary wavelengths from different input fiber ports can be multiplexed into a common output fiber port. In addition, wavelength division multiplexed channels of arbitrary wavelength spacings can also be demultiplexed and dynamically routed into arbitrary output fiber ports. A proof-of-principle 1×3 adaptive multiplexer/demultiplexers is experimentally demonstrated.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2340) Fiber optics and optical communications : Fiber optics components

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 16, 2010
Revised Manuscript: May 18, 2010
Manuscript Accepted: May 19, 2010
Published: May 25, 2010

Citation
Feng Xiao and Kamal Alameh, "Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing," Opt. Express 18, 12277-12282 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zhao, J. Qiao, X. Deng, J. Zou, B. Guo, R. Collins, V. Villavicencio, K. K. Chang, J. W. Horwitz, B. Morey, and R. T. Chen, “Reliable grating-based wavelength division (de)multiplexers for otptical networks,” Opt. Eng. 40(7), 1204–1211 (2001). [CrossRef]
  2. C. X. Yu, D. T. Neilson, and S. Member, “Diffraction-Grating-Based (De) Multiplexer Using Image Plane Transformations,” J. Sel. Topic Quantum Electron. 8(6), 1194–1201 (2002). [CrossRef]
  3. R. H. Qu, H. Zhao, Z. J. Fang, E. Marin, and J. P. Meunier, “Configurable wavelength-selective switch based on fiber grating and fiber loop mirror,” IEEE Photon. Technol. Lett. 12(10), 1343–1345 (2000). [CrossRef]
  4. M. K. Smit and C. Dam Van, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]
  5. J. S. Patel and Y. Silberberg, “Liquid crystal and grating-based multiple wavelength cross-connect switch,” IEEE Photon. Technol. Lett. 7(5), 514–516 (1995). [CrossRef]
  6. G. Baxter, S. Frisken, D. Abakoumov, H. Zhu, I. Clarke, A. Bartos, and S. Poole, “Highly programmable Wavelength Selective Switch based on Liquid Crystal on Silicon switching elements,” in OFC/NFOEC 2005 (2005).
  7. M. T. Knapczyk, L. G. De Peralta, A. A. Bernussi, and H. Temkin, “Reconfigurable Add – Drop Optical Filter Based on Arrays of Digital Micromirrors,” J. Lightwave Technol. 26(2), 237–242 (2008). [CrossRef]
  8. J. C. Tsai, S. Huang, D. Hah, and M. C. Wu, “1 x N-2 wavelength-selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system,” J. Lightwave Technol. 24(2), 897–903 (2006). [CrossRef]
  9. F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, “Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors,” Opt. Express 16(16), 11703 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited