OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12341–12347

Distortionless large-ratio stretcher for ultra-short pulses using photonic crystal fiber

L.-G. Li, L.-S. Yan, G.-Y. Feng, W. Pan, B. Luo, A. Yi, and R.-L. Zhu  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12341-12347 (2010)
http://dx.doi.org/10.1364/OE.18.012341


View Full Text Article

Enhanced HTML    Acrobat PDF (679 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A large-ratio stretcher for ultra-short pulses is proposed based on photonic crystal fiber (PCF). Through proper design of the PCF structure, we obtain over 300-nm wavelength range with flattened dispersion characteristics. Analysis indicates that 1-km of such fiber can broaden over 10,000 times for ultra-short pulses with <100-fs pulse-width. Distortion due to dispersion and nonlinearity is negligible.

© 2010 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Ultrafast Optics

History
Original Manuscript: February 8, 2010
Revised Manuscript: May 13, 2010
Manuscript Accepted: May 17, 2010
Published: May 26, 2010

Citation
L.-G. Li, L.-S. Yan, G.-Y. Feng, W. Pan, B. Luo, A. Yi, and R.-L. Zhu, "Distortionless large-ratio stretcher for ultra-short pulses using photonic crystal fiber," Opt. Express 18, 12341-12347 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12341


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24(2), 398–403 (1988). [CrossRef]
  2. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21(6), 414–416 (1996). [CrossRef] [PubMed]
  3. D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and C. T. Cotton, “Terawatt Ti:sapphire laser with a spherical reflective-optic pulse expander,” Opt. Lett. 20(20), 2114–2116 (1995). [CrossRef] [PubMed]
  4. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. QE-28(4), 908–920 (1992). [CrossRef]
  5. H. Takada, M. Kakehata, and K. Torizuka, “Large-ratio stretch and recompression of sub-10-fs pulse utilizing dispersion managed devices and a spatial light modulator,” Appl. Phys. B 74(9), s253–s257 (2002). [CrossRef]
  6. Y. Nabekawa, Y. Shimizu, and K. Midorikawa, “Sub-20-fs terawatt-class laser system with a mirrorless regenerative amplifier and an adaptive phase controller,” Opt. Lett. 27(14), 1265–1267 (2002). [CrossRef]
  7. G. Chériaux, O. Albert, V. Wänman, J. P. Chambaret, C. Félix, and G. Mourou, “Temporal control of amplified femtosecond pulses with a deformable mirror in a stretcher,” Opt. Lett. 26(3), 169–171 (2001). [CrossRef]
  8. O. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in the 1.3-1.6mm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987). [CrossRef]
  9. B. E. Lemoff and C. P. J. Barty, “Quintic-phase-limited, spatially uniform expansion and recompression of ultrashort optical pulses,” Opt. Lett. 18(19), 1651–1653 (1993). [CrossRef] [PubMed]
  10. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21(6), 414–416 (1996). [CrossRef] [PubMed]
  11. L. Kuznetsova and F. W. Wise, “Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification,” Opt. Lett. 32(18), 2671–2673 (2007). [CrossRef] [PubMed]
  12. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014W/cm2 peak intensity at 136 MHz,” Opt. Lett. 32(19), 2870–2872 (2007). [CrossRef] [PubMed]
  13. L. Grüner-Nielsen, D. Jakobsen, K. G. Jespersen, and B. Pálsdóttir, “A stretcher fiber for use in fs chirped pulse Yb amplifiers,” Opt. Express 18(4), 3768–3773 (2010). [CrossRef] [PubMed]
  14. T. A. Birks, J. C. Knight, and P. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Express 22(13), 961–963 (1997).
  15. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  16. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  17. L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, “Low loss photonic crystal fiber,” in European Conference on Optical Communication (Copenhagen, 2002), post-deadline paper PD13, (2002).
  18. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005). [CrossRef] [PubMed]
  19. K. Saitoh, T. Fujisawa, T. Kirihara, and M. Koshiba, “Approximate empirical relations for nonlinear photonic crystal fibers,” Opt. Express 14(14), 6572–6582 (2006). [CrossRef] [PubMed]
  20. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000). [CrossRef]
  21. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24(20), 1395–1397 (1999). [CrossRef]
  22. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18(7), 1031–1037 (2000). [CrossRef]
  23. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005). [CrossRef] [PubMed]
  24. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 7, 341–348 (2002).
  25. K. R. Khan, T. X. Wu, D. N. Christodoulides, and G. I. Stegeman, “Soliton switching and multi-frequency generation in a nonlinear photonic crystal fiber coupler,” Opt. Express 16(13), 9417–9428 (2008). [CrossRef] [PubMed]
  26. Z. Zhu and T. G. Brown, “Analysis of the space filling modes of photonic crystal fibers,” Opt. Express 8(10), 547–554 (2001). [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  28. A. Efimov and A. J. Taylor, “Supercontinuum generation and soliton timing jitter in SF6 soft glass photonic crystal fibers,” Opt. Express 16(8), 5942–5953 (2008). [CrossRef] [PubMed]
  29. M. Erkintalo, G. Genty, and J. M. Dudley, “Rogue-wave-like characteristics in femtosecond supercontinuum generation,” Opt. Lett. 34(16), 2468–2470 (2009). [CrossRef] [PubMed]
  30. A. Peleg, “Energy exchange in fast optical soliton collisions as a random cascade model,” Phys. Lett. A 373(31), 2734–2738 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited