OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12348–12353

Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial

Durdu Ö. Güney, Thomas Koschny, and Costas M. Soukoulis  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12348-12353 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (970 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Isotropic negative index metamaterials (NIMs) are highly desired, particularly for the realization of ultra-high resolution lenses. However, existing isotropic NIMs function only two-dimensionally and cannot be miniaturized beyond microwaves. Direct laser writing processes can be a paradigm shift toward the fabrication of three-dimensionally (3D) isotropic bulk optical metamaterials, but only at the expense of an additional design constraint, namely connectivity. Here, we demonstrate with a proof-of-principle design that the requirement connectivity does not preclude fully isotropic left-handed behavior. This is an important step towards the realization of bulk 3D isotropic NIMs at optical wavelengths.

© 2010 OSA

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: February 17, 2010
Revised Manuscript: April 1, 2010
Manuscript Accepted: April 6, 2010
Published: May 26, 2010

Durdu Ö. Güney, Thomas Koschny, and Costas M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial," Opt. Express 18, 12348-12353 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt and T. G. Philbin, “Quantum levitation by left-handed metamaterials,” N. J. Phys. 9(8), 254 (2007). [CrossRef]
  5. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, “Simulation and testing of a graded negative index of refraction lens,” Appl. Phys. Lett. 87(9), 091114 (2005). [CrossRef]
  6. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008). [CrossRef] [PubMed]
  7. D. O. Güney, Th. Koschny, M. Kafesaki, and C. M. Soukoulis, “Connected bulk negative index photonic metamaterials,” Opt. Lett. 34(4), 506–508 (2009). [CrossRef] [PubMed]
  8. P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002). [CrossRef]
  9. W. J. Padilla, “Group theoretical description of artificial electromagnetic metamaterials,” Opt. Express 15(4), 1639–1646 (2007). [CrossRef] [PubMed]
  10. J. D. Baena, L. Jelinek, and R. Marques, “Towards systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B 76(24), 245115 (2007). [CrossRef]
  11. Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B 71(12), 121103 (2005). [CrossRef]
  12. A. Grbic and G. V. Eleftheriades, “An isotropic three-dimensional negative-refractive-index transmission-line metamaterial,” J. Appl. Phys. 98(4), 043106 (2005). [CrossRef]
  13. P. Alitalo, S. Maslovski, and S. Tretyakov, “Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens,” J. Appl. Phys. 99(12), 124910 (2006). [CrossRef]
  14. R. Marques, L. Jelinek, and F. Mesa, “Negative refraction from balanced quasi-planar chiral inclusions,” Microw. Opt. Technol. Lett. 49(10), 2606–2609 (2007). [CrossRef]
  15. I. Vendik, O. Vendik, I. Kolmakov, and M. Odit, “Modelling of isotropic double negative media for microwave applications,” Opto-Electron. Rev. 14(3), 179–186 (2006). [CrossRef]
  16. C. B. Arnold and A. Pique, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007). [CrossRef]
  17. K. Sugioka, B. Gu, and A. Holmes, “The state of the art and future prospects for laser direct-write for industrial and commercial applications,” MRS Bull. 32, 47–54 (2007). [CrossRef]
  18. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-dimensional photonic nanostructures for photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010). [CrossRef]
  19. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterial at telecommunication wavelengths,” Opt. Lett. 31(12), 1800–1802 (2006). [CrossRef] [PubMed]
  20. D. O. Guney, Th. Koschny, and C. M. Soukoulis, “Reducing ohmic losses in metamaterials by geometric tailoring,” Phys. Rev. B 80(12), 125129 (2009). [CrossRef]
  21. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007). [CrossRef] [PubMed]
  22. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  23. Th. Koschny, P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71(24), 245105 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited