OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12381–12390

Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre

B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12381-12390 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a novel means which lifts the restriction of the limited optical bandwidth of photonic bandgap hollow-core photonic crystal fiber on generating high order stimulated Raman scattering in gaseous media. This is based on H2-filled tapered HC-PCF in which the taper slope is matched with the effective length of Raman process. Raman orders outside the input-bandwidth of the HC-PCF are observed with more than 80% quantum-conversion using a compact, low-power 1064 nm microchip laser. The technique opens prospects for efficient sources in spectral regions that are poorly covered by currently existing lasers such as mid-IR.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.5650) Nonlinear optics : Raman effect
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 1, 2010
Revised Manuscript: April 2, 2010
Manuscript Accepted: April 4, 2010
Published: May 26, 2010

B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid, "Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre," Opt. Express 18, 12381-12390 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Benabid, G. Bouwmans, J. C. Knight, P. S. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004). [CrossRef] [PubMed]
  2. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903–143904 (2007). [CrossRef] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005). [CrossRef] [PubMed]
  4. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008). [CrossRef] [PubMed]
  5. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]
  6. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33(15), 1690–1692 (2008). [CrossRef] [PubMed]
  7. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31(22), 1941–1943 (1995). [CrossRef]
  8. J. Shephard, W. Macpherson, R. Maier, J. Jones, D. Hand, M. Mohebbi, A. George, P. Roberts, and J. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005). [CrossRef] [PubMed]
  9. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express 17(26), 23468–23473 (2009). [CrossRef]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002). [CrossRef] [PubMed]
  11. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc. J Optoelectron. 138, 343–354 (1991). [CrossRef]
  12. F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression,” Opt. Express 15(12), 7126–7131 (2007). [CrossRef] [PubMed]
  13. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996). [CrossRef] [PubMed]
  14. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef] [PubMed]
  15. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003). [CrossRef] [PubMed]
  16. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004). [CrossRef] [PubMed]
  17. Y. Y. Wang, P. S. Light, and F. Benabid, “Core-surround Shaping of Hollow-Core Photonic Crystal Fiber via HF Etching,” Photon. Technol. Lett. 20(12), 1018–1020 (2008). [CrossRef]
  18. G. C. Fralick and R. T. Deck, “Reassessment of the theory of stimulated Raman scattering,” Phys. Rev. B 32(10), 6207–6213 (1985). [CrossRef]
  19. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in Microstructured Optical Fibers,” Annu. Rev. Mater. Res. 36(1), 467–495 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited