OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12391–12398

Highly nonlinear hybrid AsSe-PMMA microtapers

Chams Baker and Martin Rochette  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12391-12398 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and characterization of an AsSe microtaper with a protective cladding made of PolyMethyl MethAcrylate (PMMA). The AsSe core of the microtaper provides an ultrahigh nonlinearity up to γ = 133 W−1m−1 whereas the polymer cladding provides mechanical strength for normal handling of the device and reduces sensitivity to the surrounding environment.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 1, 2010
Revised Manuscript: May 22, 2010
Manuscript Accepted: May 23, 2010
Published: May 26, 2010

Chams Baker and Martin Rochette, "Highly nonlinear hybrid AsSe-PMMA microtapers," Opt. Express 18, 12391-12398 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009). [CrossRef] [PubMed]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic press, 2007), 4th ed.
  3. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. 21(6), 1146–1155 (2004). [CrossRef]
  4. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, and G. I. Stegeman, “Enhanced self-phase modulation in tapered fibers,” Opt. Lett. 18(23), 1996–1998 (1993). [CrossRef] [PubMed]
  5. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  6. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  7. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  8. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As(2)Se(3) chalcogenide fiber tapers,” Opt. Express 15(16), 10324–10329 (2007). [CrossRef] [PubMed]
  9. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, “External reflection from omnidirectional dielectric mirror fibers,” Science 296(5567), 510–513 (2002). [CrossRef] [PubMed]
  10. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  11. T. Engeness, M. Ibanescu, S. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003). [CrossRef] [PubMed]
  12. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009). [CrossRef] [PubMed]
  13. V. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, “Nonlinear modal parameters of optical fibers: a full-vectorial approach,” J. Opt. Soc. Am. B 12(10), 1933–1941 (1995). [CrossRef]
  14. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34(22), 3577–3579 (2009). [CrossRef] [PubMed]
  15. G. Boudebs, S. Cherukulappurath, M. Guignard, J. Troles, F. Smektala, and F. Sanchez, “Linear optical characterization of chalcogenide glasses,” Opt. Commun. 230(4-6), 331–336 (2004). [CrossRef]
  16. J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop. 21(2), 168–175 (1977). [CrossRef]
  17. F. D'Amore, M. Lanata, S. M. Pietralunga, M. C. Gallazzi, and G. Zerbi, “Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule,” Opt. Mater. 24(4), 661–665 (2004). [CrossRef]
  18. M. G. Kuzyk, Polymer Fiber Optics: Materials, Physics, and Applications (CRC press, 2007).
  19. J. D. Love and W. M. Henry, “Quantifying loss minimization in single-mode fibre tapers,” Electron. Lett. 22(17), 912–914 (1986). [CrossRef]
  20. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, “Fabrication of single-mode chalcogenide optical fiber,” J. Lightwave Technol. 16(2), 214–217 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited