OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12415–12420

Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering

Xuezhi Hong, Dawei Wang, Lei Xu, and Sailing He  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12415-12420 (2010)
http://dx.doi.org/10.1364/OE.18.012415


View Full Text Article

Enhanced HTML    Acrobat PDF (1651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel approach is proposed and experimentally demonstrated for optical steganography transmission in WDM networks using temporal phase coded optical signals with spectral notch filtering. A temporal phase coded stealth channel is temporally and spectrally overlaid onto a public WDM channel. Direct detection of the public channel is achieved in the presence of the stealth channel. The interference from the public channel is suppressed by spectral notching before the detection of the optical stealth signal. The approach is shown to have good compatibility and robustness to the existing WDM network for optical steganography transmission.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 29, 2010
Revised Manuscript: May 20, 2010
Manuscript Accepted: May 24, 2010
Published: May 26, 2010

Citation
Xuezhi Hong, Dawei Wang, Lei Xu, and Sailing He, "Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering," Opt. Express 18, 12415-12420 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Wu and E. E. Narimanov, “A method for secure communications over a public fiber-optical network,” Opt. Express 14(9), 3738–3751 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3738 . [CrossRef] [PubMed]
  2. B. B. Wu and E. E. Narimanov, “Analysis of stealth communications over a public fiber-optical network,” Opt. Express 15(2), 289–301 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-289 . [CrossRef] [PubMed]
  3. M. P. Fok and P. R. Prucnal, “Compact and low-latency scheme for optical steganography using chirped fibre Bragg gratings,” Electron. Lett. 45(3), 179–180 (2009). [CrossRef]
  4. K. Kravtsov, B. Wu, I. Glysk, P. R. Prucnal, and E. Narimanov, “Stealth Transmission over a WDM Network with Detection Based on an All-Optical Thresholder,” in Proceeding of 20th Annual Meeting of the IEEE Lasers and Electro-Optics (Florida, 2007), pp. 480–481.
  5. B. Wu, A. Agarwal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, “Steganographic Fiber-Optic Transmission Using Coherent Spectral-Phase-Encoded Optical CDMA,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFF5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CFF5 .
  6. B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Technol. Lett. 18(17), 1870–1872 (2006). [CrossRef]
  7. T. Shake, “Security Performance of Optical CDMA Against Eavesdropping,” J. Lightwave Technol. 23(2), 655–670 (2005). [CrossRef]
  8. Z. Jiang, D. Seo, S. Yang, D. Leaird, R. Roussev, C. Langrock, M. Fejer, and A. Weiner, “Four-User, 2.5-Gb/s, Spectrally Coded OCDMA System Demonstration Using Low-Power Nonlinear Processing,” J. Lightwave Technol. 23(1), 143–158 (2005). [CrossRef]
  9. V. Baby, I. Glesk, R. J. Runser, R. Fischer, Y.-K. Huang, C.-S. Bres, W. C. Kwong, T. H. Curtis, and P. R. Prucnal, “Experimental demonstration and scalability analysis of a four-node 102-Gchip/s fast frequency-hopping time-spreading optical CDMA network,” IEEE Photon. Technol. Lett. 17(1), 253–255 (2005). [CrossRef]
  10. P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, “A Comparative Study of the Performance of Seven-and 63-Chip Optical Code-Division Multiple-Access Encoders and Decoders Based on Superstructured Fiber Bragg Gratings,” J. Lightwave Technol. 19(9), 1352–1365 (2001). [CrossRef]
  11. X. Wang, K. Matsushima, A. Nishiki, N. Wada, and K. Kitayama, “High reflectivity superstructured FBG for coherent optical code generation and recognition,” Opt. Express 12(22), 5457–5468 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5457 . [CrossRef] [PubMed]
  12. J. Castro, I. Djordjevic, and D. Geraghty, “Novel Super Structured Bragg Gratings for Optical Encryption,” J. Lightwave Technol. 24(4), 1875–1885 (2006). [CrossRef]
  13. S. Shen and A. M. Weiner, “Suppression of WDM interference for error-free detection of ultrashort-pulse CDMA signals in spectrally overlaid hybrid WDM-CDMA operation,” IEEE Photon. Technol. Lett. 13(1), 82–84 (2001). [CrossRef]
  14. X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express 13(14), 5499–5505 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5499 . [CrossRef] [PubMed]
  15. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=OE-15-20-13114 . [CrossRef] [PubMed]
  16. C. Guo, X. Hong, and S. He, “Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation,” IEEE Photon. Technol. Lett. 21(20), 1484–1486 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited