OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12430–12435

A novel adaptive mechanical-wetting lens for visible and near infrared imaging

Su Xu, Yifan Liu, Hongwen Ren, and Shin-Tson Wu  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12430-12435 (2010)
http://dx.doi.org/10.1364/OE.18.012430


View Full Text Article

Enhanced HTML    Acrobat PDF (880 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an adaptive mechanical-wetting lens with a concentric reservoir to reduce image aberrations and overcome the gravity effect. This lens adopts liquid pressure to change the interface between two immiscible liquids which, in turn, changes the focal length of the resultant liquid lens. Good optical performance, high resolution, and a wide dynamic range of both positive and negative optical power are achieved. Since no PDMS is employed, such lenses can extend their working range to infrared region by choosing proper liquids.

© 2010 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Adaptive Optics

History
Original Manuscript: March 30, 2010
Revised Manuscript: May 19, 2010
Manuscript Accepted: May 19, 2010
Published: May 26, 2010

Citation
Su Xu, Yifan Liu, Hongwen Ren, and Shin-Tson Wu, "A novel adaptive mechanical-wetting lens for visible and near infrared imaging," Opt. Express 18, 12430-12435 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12430


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Reza and N. A. Riza, “A liquid lens-based broadband variable fiber optical attenuator,” Opt. Commun. 282(7), 1298–1303 (2009). [CrossRef]
  2. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009). [CrossRef] [PubMed]
  3. N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32(22), 4181–4186 (1993). [CrossRef] [PubMed]
  4. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  5. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82(19), 3171–3173 (2003). [CrossRef]
  6. C. A. López, C. C. Lee, and A. H. Hirsa, “Electrochemically activated adaptive liquid lens,” Appl. Phys. Lett. 87(13), 134102–134104 (2005). [CrossRef]
  7. L. Miccio, A. Finizio, S. Grilli, V. Vespini, M. Paturzo, S. De Nicola, and P. Ferraro, “Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy,” Opt. Express 17(4), 2487–2499 (2009). [CrossRef] [PubMed]
  8. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006). [CrossRef] [PubMed]
  9. M. Vallet, B. Berge, and L. Volvelle, “Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films,” Polymer (Guildf.) 37(12), 2465–2470 (1996). [CrossRef]
  10. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007). [CrossRef] [PubMed]
  11. S. Xu, Y. J. Lin, and S. T. Wu, “Dielectric liquid microlens with well-shaped electrode,” Opt. Express 17(13), 10499–10505 (2009). [CrossRef] [PubMed]
  12. T. Shin, C. Chen, J. Ho, and F. Chuang, “Fabrication of PDMS microlens and diffuser using replica molding,” Mirco. Eng. 83(11–12), 2499–2503 (2006).
  13. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [CrossRef]
  14. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94(22), 221108 (2009). [CrossRef]
  15. S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998). [CrossRef]
  16. C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” Photon. Technol. Lett. 21(19), 1396–1398 (2009). [CrossRef]
  17. D. Zhu, C. Li, X. Zeng, and H. Jiang, “Tunable-focus microlens arrays on curved surfaces,” Appl. Phys. Lett. 96(8), 081111–081113 (2010). [CrossRef]
  18. C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (3907 KB)     
» Media 2: MOV (3339 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited