OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12470–12481

Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration

Yung-Chiang Lan and Chih-Min Chen  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12470-12481 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study elucidates the characteristics of a long-range surface magnetoplasmon (LRSMP) that propagates on a plasmon film with the Voigt configuration. Particle-in-cell (PIC) simulations and theoretical analyses are performed. Simulation results indicate that LRSMP has non-symmetrical fields. The proposed scheme also verifies the non-reciprocal properties of LRSMP as the direction of an applied external magnetic field is reversed. When surface waves propagate on a plasmon film across an interface on one side of which long-range surface plasmon (LRSP) is allowed while on the other side of which LRSMP is allowed, the interface behaves similar to a defect and transforms the surface waves into radiation modes owing to the mismatch between the field patterns of LRSP and LRSMP. Furthermore, PIC simulation results confirm the presence of a new high-frequency LRSMP whose frequency exceeds the plasma frequency and lacks a LRSP counterpart.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: April 19, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: May 25, 2010
Published: May 26, 2010

Yung-Chiang Lan and Chih-Min Chen, "Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration," Opt. Express 18, 12470-12481 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  4. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  5. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  6. M. S. Kushwaha, “Plasmons and magnetoplasmons in semiconductor heterostructures,” Surf. Sci. Rep. 41(1-8), 1–416 (2001). [CrossRef]
  7. J. J. Brion, R. F. Wallis, A. Hartstein, and E. Burstein, “Theory of surface magnetoplasmons in semiconductors,” Phys. Rev. Lett. 28(22), 1455–1458 (1972). [CrossRef]
  8. K. W. Chiu and J. J. Quinn, “Magnetoplasma surface waves in metals,” Phys. Rev. B 5(12), 4707–4709 (1972). [CrossRef]
  9. R. Wallis, J. Brion, E. Burstein, and A. Hartstein, “Theory of surface polaritons in anisotropic dielectric media with application to surface magnetoplasmons in semiconductors,” Phys. Rev. B 9(8), 3424–3437 (1974). [CrossRef]
  10. C. Uberoi and U. J. Rao, “Surface waves on the boundary of a magnetized plasma,” Plasma Phys. 17(9), 659–670 (1975). [CrossRef]
  11. U. J. Rao and C. Uberoi, “Surface magnetoplasmons in semiconductors,” Phys. Rev. B 18(6), 2941–2943 (1978). [CrossRef]
  12. R. E. De Wames and W. F. Hall, “Magnetic field effect on plasma-wave dispersion in a dielectric layer,” Phys. Rev. Lett. 29(3), 172–175 (1972). [CrossRef]
  13. D. Sarid, “Enhanced surface-magnetoplasma interactions in a semiconductor,” Phys. Rev. B 29(4), 2344–2346 (1984). [CrossRef]
  14. M. S. Kushwaha and P. Halevi, “Magnetoplasmons in thin films in the Voigt configuration,” Phys. Rev. B 36(11), 5960–5967 (1987). [CrossRef]
  15. F. G. Elmzughi and D. R. Tilley, “Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry,” J. Phys. Condens. Matter 6(23), 4233–4246 (1994). [CrossRef]
  16. J. H. Jacobo-Escobar and G. H. Cocoletzi, “Magnetic field effects on the optical response of a film with a rough surface: Voigt geometry,” Superlattices Microstruct. 33(3), 145–154 (2003). [CrossRef]
  17. F. M. Kong, K. Li, H. Huang, B. I. Wu, and J. A. Kong, “Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies,” Progress In Electromagnetics Research, PIER 82, 257–270 (2008). [CrossRef]
  18. X. X. Liu, C. F. Tsai, R. L. Chern, and D. P. Tsai, “Dispersion mechanism of surface magnetoplasmons in periodic layered structures,” Appl. Opt. 48(16), 3102–3107 (2009). [CrossRef] [PubMed]
  19. Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77(20), 205113 (2008). [CrossRef]
  20. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed. (Artech House, Boston, 2005).
  21. C. K. Birdsall, and A. B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, London, 1991).
  22. Y. C. Lan, “Optical tunneling effect of localized surface plasmon: a simulation study using particle-in-cell method,” Appl. Phys. Lett. 88(7), 071109 (2006). [CrossRef]
  23. Y. C. Lan, Y. C. Chang, and P. H. Lee, “Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons,” Appl. Phys. Lett. 90(17), 171114 (2007). [CrossRef]
  24. J. Gómez Rivas, C. Janke, P. H. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-847 . [CrossRef] [PubMed]
  25. T. H. Isaac, W. L. Barnes, and E. Hendry, “Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons,” Appl. Phys. Lett. 93(24), 241115 (2008). [CrossRef]
  26. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum Press, New York, 1974).
  27. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited