OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12482–12488

Large dynamic resonance transition between surface plasmon and localized surface plasmon modes

Zhen Tian, Abul K. Azad, Xinchao Lu, Jianqiang Gu, Jiaguang Han, Qirong Xing, Antoinette J. Taylor, John F. O’Hara, and Weili Zhang  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12482-12488 (2010)
http://dx.doi.org/10.1364/OE.18.012482


View Full Text Article

Enhanced HTML    Acrobat PDF (1006 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present resonant terahertz transmission in a composite plasmonic film comprised of an array of subwavelength metallic patches and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π / 2 phase shift achieved in the composite plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 28, 2010
Revised Manuscript: May 18, 2010
Manuscript Accepted: May 19, 2010
Published: May 26, 2010

Citation
Zhen Tian, Abul K. Azad, Xinchao Lu, Jianqiang Gu, Jiaguang Han, Qirong Xing, Antoinette J. Taylor, John F. O’Hara, and Weili Zhang, "Large dynamic resonance transition between surface plasmon and localized surface plasmon modes," Opt. Express 18, 12482-12488 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12482


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004). [CrossRef] [PubMed]
  4. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  5. C. Rockstuhl, F. Lederer, T. Zentgraf, and H. Giessen, “Enhanced transmission of periodic, quasiperiodic, and random nanoaperture arrays,” Appl. Phys. Lett. 91(15), 151109 (2007). [CrossRef]
  6. C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30(18), 2357–2359 (2005). [CrossRef] [PubMed]
  7. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98(18), 183901 (2007). [CrossRef] [PubMed]
  8. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008). [CrossRef] [PubMed]
  9. E. J. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007). [CrossRef] [PubMed]
  10. C. L. Haynes, A. D. Mcfarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003). [CrossRef]
  11. X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92(12), 121103 (2008). [CrossRef]
  12. X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94(18), 181106 (2009). [CrossRef]
  13. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005). [CrossRef]
  14. X. Lu, J. Han, and W. Zhang, “Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries,” Opt. Lett. 35(7), 904–906 (2010). [CrossRef] [PubMed]
  15. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic array,” Phys. Rev. Lett. 94(3), 033902 (2005). [CrossRef] [PubMed]
  16. A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86(14), 141102 (2005). [CrossRef]
  17. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002). [CrossRef]
  18. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004). [CrossRef] [PubMed]
  19. X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13(24), 9834–9840 (2005). [CrossRef] [PubMed]
  20. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  21. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006 (1990). [CrossRef]
  22. H.-T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008). [CrossRef]
  23. F. Gao, L. Carr, C. D. Porter, D. B. Tanner, G. P. Williams, C. J. Hirschmugl, B. Dutta, X. D. Wu, and S. Etemad, “Quasiparticle damping and the coherence peak in Yba2Cu3O7-δ,” Phys. Rev. B 54(1), 700–710 (1996). [CrossRef]
  24. K. P. H. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon-on-sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78(22), 3478 (2001). [CrossRef]
  25. K. Das, “Comment on published carrier lifetime data on silicon-on-insulator (SOI) materials,” Electron. Lett. 23(11), 579 (1987). [CrossRef]
  26. A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30(21), 2945–2947 (2005). [CrossRef] [PubMed]
  27. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays,” Opt. Lett. 31(17), 2637–2639 (2006). [CrossRef] [PubMed]
  28. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009). [CrossRef]
  29. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Sub-picosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved THz spectroscopy,” J. Appl. Phys. 90(12), 5915 (2001). [CrossRef]
  30. A. K. Azad, H.-T. Chen, S. R. Kasarla, A. J. Taylor, Z. Tian, X. Lu, W. Zhang, H. Lu, A. C. Gossard, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited