OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12513–12525

Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules

Thomas O’Sullivan, Elizabeth A. Munro, Natesh Parashurama, Christopher Conca, Sanjiv S. Gambhir, James S. Harris, and Ofer Levi  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12513-12525 (2010)
http://dx.doi.org/10.1364/OE.18.012513


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated miniature implantable fluorescence sensors for continuous fluorescence sensing applications in living subjects. These monolithically integrated GaAs-based sensors incorporate a 675nm vertical-cavity surface-emitting laser (VCSEL), a GaAs PIN photodiode, and a fluorescence emission filter. We demonstrate high detection sensitivity for Cy5.5 far-red dye (50 nanoMolar) in living tissue, limited by the intrinsic background autofluorescence. These low cost, sensitive and scalable sensors are promising for long-term continuous monitoring of molecular dynamics for biomedical studies in freely moving animals.

© 2010 OSA

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(130.6010) Integrated optics : Sensors
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(230.5160) Optical devices : Photodetectors

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 23, 2010
Revised Manuscript: May 22, 2010
Manuscript Accepted: May 22, 2010
Published: May 27, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Thomas O’Sullivan, Elizabeth A. Munro, Natesh Parashurama, Christopher Conca, Sanjiv S. Gambhir, James S. Harris, and Ofer Levi, "Implantable semiconductor biosensor for continuous in vivo sensing of far-red fluorescent molecules," Opt. Express 18, 12513-12525 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12513


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Massoud and S. S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes Dev. 17(5), 545–580 (2003). [CrossRef] [PubMed]
  2. M. S. Gee, R. Upadhyay, H. Bergquist, H. Alencar, F. Reynolds, M. Maricevich, R. Weissleder, L. Josephson, and U. Mahmood, “Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy,” Radiology 248(3), 925–935 (2008). [CrossRef] [PubMed]
  3. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003). [CrossRef] [PubMed]
  4. O. Veiseh, C. Sun, C. Fang, N. Bhattarai, J. Gunn, F. Kievit, K. Du, B. Pullar, D. Lee, R. G. Ellenbogen, J. Olson, and M. Zhang, “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Res. 69(15), 6200–6207 (2009). [CrossRef] [PubMed]
  5. M. Beiderman, T. Tam, A. Fish, G. A. Jullien, and O. Yadid-Pecht, “A low-light CMOS contact imager with an emission filter for biosensing applications,” IEEE Trans. Biomed. Circuit Syst. 2(3), 193–203 (2008). [CrossRef]
  6. D. Brennan, J. Justice, B. Corbett, T. McCarthy, and P. Galvin, “Emerging optofluidic technologies for point-of-care genetic analysis systems: a review,” Anal. Bioanal. Chem. 395(3), 621–636 (2009). [CrossRef] [PubMed]
  7. J. A. Chediak, Z. Luo, J. Seo, N. Cheung, L. P. Lee, and T. D. Sands, “Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems,” Sens. Actuators A Phys. 111(1), 1–7 (2004). [CrossRef]
  8. T. Kamei and T. Wada, “Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices,” Appl. Phys. Lett. 89(11), 114101 (2006). [CrossRef]
  9. L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, “Integrated Optical Sensor in a Digital Microfluidic Platform,” IEEE Sens. J. 8(5), 628–635 (2008). [CrossRef]
  10. L. Martinelli, H. Choumane, K.-N. Ha, G. Sagarzazu, C. Goutel, C. Weisbuch, T. Gacoin, and H. Benisty, “Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: Role of a high rejection of excitation light,” Appl. Phys. Lett. 91(8), 083901–083903 (2007). [CrossRef]
  11. D. Starikov, F. Benkabou, N. Medelci, and A. Bensaoula, “Integrated multi-wavelength fluorescence sensors,” in Proceedings of IEEE Sensors for Industry Conference, (Institute of Electrical and Electronics Engineers, 2002), pp. 15–18.
  12. E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., ““Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005). [CrossRef]
  13. D. C. Ng, T. Tokuda, A. Yamamoto, M. Matsuo, M. Nunoshita, H. Tamura, Y. Ishikawa, S. Shiosaka, and J. Ohta, “On-chip biofluorescence imaging inside a brain tissue phantom using a CMOS image sensor for in vivo brain imaging verification,” Sens. Actuators B Chem. 119(1), 262–274 (2006). [CrossRef]
  14. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008). [CrossRef] [PubMed]
  15. J. Thomas, A. Ambroise, K. Birchfield, W. Cai, C. Sandmann, S. Singh, K. Weidemaier, and J. B. Pitner, “Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites,” Proc. SPIE 6078, 60781–60789 (2006). [CrossRef]
  16. O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007). [CrossRef] [PubMed]
  17. M. K. Hibbs-Brenner, K. L. Johnson, and M. Bendett, “VCSEL technology for medical diagnostics and therapeutics,” Proc. SPIE 7180, 71800–71810 (2009). [CrossRef]
  18. K. D. Choquette, A. Giannopoulos, A. M. Kasten, C. Long, and C. Chen, “2-Dimensional Integrated VCSEL and PiN Photodetector Arrays for a Bidirectional Optical Links,” in IEEE Aerospace Conference, (Institute of Electrical and Electronics Engineers, 2007), pp. 1–7.
  19. G. A. Keeler, D. K. Serkland, K. M. Geib, J. F. Klem, and G. M. Peake, “In situ optical time-domain reflectometry (OTDR) for VCSEL-based communication systems,” Proc. SPIE 6132, 61320A (2006). [CrossRef]
  20. E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, “Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing,” IEEE J. Quantum Electron. 40(5), 491–498 (2004). [CrossRef]
  21. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci. 2(2), 124–129 (2003). [CrossRef] [PubMed]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2(1-2), 26–40 (2000). [CrossRef] [PubMed]
  23. X. Shu, A. Royant, M. Z. Lin, T. A. Aguilera, V. Lev-Ram, P. A. Steinbach, and R. Y. Tsien, “Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome,” Science 324(5928), 804–807 (2009). [CrossRef] [PubMed]
  24. M. Veiseh, P. Gabikian, S. B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen, and J. M. Olson, “Tumor paint: a chlorotoxin:Cy5.5 bioconjugate for intraoperative visualization of cancer foci,” Cancer Res. 67(14), 6882–6888 (2007). [CrossRef] [PubMed]
  25. E. M. Sevick-Muraca and J. C. Rasmussen, “Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine,” J. Biomed. Opt. 13(4), 041303–041316 (2008). [CrossRef] [PubMed]
  26. T. D. O'Sullivan, E. Munro, A. de la Zerda, N. Parashurama, R. Teed, Z. Walls, O. Levi, S. S. Gambhir, and J. S. Harris, “Implantable optical biosensor for in vivo molecular imaging,” Proc. SPIE 7173, 717309 (2009). [CrossRef]
  27. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007). [CrossRef] [PubMed]
  28. T. D. O'Sullivan, A. Wechselberger, O. Levi, and J. S. Harris, “Compact Semiconductor Bioluminescence Bio-sensors,” in Frontiers in Optics / Laser Science, Technical Digest (CD) (Optical Society of America, 2007), paper JMD5.
  29. E. Thrush, O. Levi, K. Wang, M. Wistey, J. S. Harris, and S. J. Smith, “Integrated semiconductor fluorescent detection system for biochip and biomedical applications,” Proc. SPIE 4626, 289–297 (2002). [CrossRef]
  30. W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 33(10), 1810–1824 (1997). [CrossRef]
  31. J.-H. Kim, D. H. Lim, and G. M. Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch,” J. Vac. Sci. Technol. B 16(2), 558–560 (1998). [CrossRef]
  32. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3(3), 916–926 (1997). [CrossRef]
  33. T. D. O'Sullivan, E. Munro, C. Conca, N. Parashurama, A. de la Zerda, S. S. Gambhir, J. S. Harris, and O. Levi, “Near-Infrared in vivo Fluorescence Sensor with Integrated Dielectric Emission Filter,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA49.
  34. T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, J. B. Doucet, P. Dubreuil, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited