## Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam

Optics Express, Vol. 18, Issue 12, pp. 12587-12598 (2010)

http://dx.doi.org/10.1364/OE.18.012587

Enhanced HTML Acrobat PDF (1119 KB)

### Abstract

Analytical formula is derived for the propagation factor (known as

© 2010 OSA

**OCIS Codes**

(010.1300) Atmospheric and oceanic optics : Atmospheric propagation

(030.0030) Coherence and statistical optics : Coherence and statistical optics

**ToC Category:**

Coherence and Statistical Optics

**History**

Original Manuscript: April 15, 2010

Revised Manuscript: May 22, 2010

Manuscript Accepted: May 24, 2010

Published: May 27, 2010

**Citation**

Shijun Zhu, Yangjian Cai, and Olga Korotkova, "Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam," Opt. Express **18**, 12587-12598 (2010)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12587

Sort: Year | Journal | Reset

### References

- D. F. V. James, “Changes of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11(5), 1641–1643 (1994). [CrossRef]
- F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian schell-model beams,” J. Opt. A, Pure Appl. Opt. 3(1), 1–9 (2001). [CrossRef]
- G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi, and A. Mondello, “Synthesis of partially polarized Gaussian Schell-model sources,” Opt. Commun. 208(1-3), 9–16 (2002). [CrossRef]
- E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5-6), 263–267 (2003). [CrossRef]
- E. Wolf and E. Collett, “Partially coherent sources which produce same far-field intensity distribution as a laser,”Opt. Commun . 25(3), 293–296 (1978). [CrossRef]
- F. Gori, “Collet-Wolf sources and multimode lasers,” Opt. Commun. 34(3), 301–305 (1980). [CrossRef]
- A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41(6), 383–387 (1982). [CrossRef]
- F. Wang and Y. Cai, “Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics,” J. Opt. Soc. Am. A 24(7), 1937–1944 (2007). [CrossRef]
- E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge U. Press, 2007).
- F. Gori, “Matrix treatment for partially polarized, partially coherent beams,” Opt. Lett. 23(4), 241–243 (1998). [CrossRef]
- G. P. Agrawal and E. Wolf, “Propagation-induced polarization changes in partially coherent optical beams,” J. Opt. Soc. Am. A 17(11), 2019–2023 (2000). [CrossRef]
- Y. Cai, D. Ge, and Q. Lin, “Fractional Fourier transform for partially coherent and partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 5(5), 453–459 (2003). [CrossRef]
- T. Shirai, O. Korotkova, and E. Wolf, “A method of generating electromagnetic Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 7(5), 232–237 (2005). [CrossRef]
- F. Gori, M. Santarsiero, R. Borghi, and V. Ramírez-Sánchez, “Realizability condition for electromagnetic Schell-model sources,” J. Opt. Soc. Am. A 25(5), 1016–1021 (2008). [CrossRef]
- B. Kanseri and H. C. Kandpal, “Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam,” Opt. Lett. 33(20), 2410–2412 (2008). [CrossRef] [PubMed]
- H. Wang, X. Wang, A. Zeng, and K. Yang, “Effects of coherence on anisotropic electromagnetic Gaussian-Schell model beams on propagation,” Opt. Lett. 32(15), 2215–2217 (2007). [CrossRef] [PubMed]
- D. Ge, Y. Cai, and Q. Lin, “Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical systems,” Chin. Phys. 14(1), 128–132 (2005). [CrossRef]
- O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett. 29(11), 1173–1175 (2004). [CrossRef] [PubMed]
- M. Yao, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33(19), 2266–2268 (2008). [CrossRef] [PubMed]
- O. Korotkova, M. Yao, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, “The state of polarization of a stochastic electromagnetic beam in an optical resonator,” J. Opt. Soc. Am. A 25(11), 2710–2720 (2008). [CrossRef]
- Z. Tong, O. Korotkova, Y. Cai, H. T. Eyyuboglu, and Y. Baykal, “Correlation properties of random electromagnetic beams in laser resonators,” Appl. Phys. B 97(4), 849–857 (2009). [CrossRef]
- Y. Cai and O. Korotkova, “Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams,” Appl. Phys. B 96(2-3), 499–507 (2009). [CrossRef]
- C. Zhao, Y. Cai, and O. Korotkova, “Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams,” Opt. Express 17(24), 21472–21487 (2009). [CrossRef] [PubMed]
- S. Zhu and Y. Cai, “Spectral shift of a twisted electromagnetic Gaussian Schell-model beam focused by a thin lens,” Appl. Phys. B 99(1-2), 317–323 (2010). [CrossRef]
- A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 2, (Academic Press, New York, 1978).
- L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Washington, 2001).
- L. C. Andrews, and R. L. Phillips, Laser beam propagation in the turbulent atmosphere, 2nd edition, (SPIE Press, Bellington, 2005).
- J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002). [CrossRef]
- H. T. Eyyuboğlu and Y. Baykal, “Analysis of reciprocity of cos-Gaussian and cosh- Gaussian laser beams in a turbulent atmosphere,” Opt. Express 12(20), 4659–4674 (2004). [CrossRef] [PubMed]
- H. T. Eyyuboğlu, C. Arpali, and Y. K. Baykal, “Flat topped beams and their characteristics in turbulent media,” Opt. Express 14(10), 4196–4207 (2006). [CrossRef] [PubMed]
- Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117 (2006). [CrossRef]
- R. J. Noriega-Manez and J. C. Gutiérrez-Vega, “Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere,” Opt. Express 15(25), 16328–16341 (2007). [CrossRef] [PubMed]
- M. Alavinejad, B. Ghafary, and F. D. Kashani, “Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere,” Opt. Lasers Eng. 46(1), 1–5 (2008). [CrossRef]
- Y. Cai and S. He, “Propagation of various dark hollow beams in a turbulent atmosphere,” Opt. Express 14(4), 1353–1367 (2006). [CrossRef] [PubMed]
- Y. Cai and S. He, “Average intensity and spreading of an elliptical gaussian beam propagating in a turbulent atmosphere,” Opt. Lett. 31(5), 568–570 (2006). [CrossRef] [PubMed]
- Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, “Scintillation index of elliptical Gaussian beam in turbulent atmosphere,” Opt. Lett. 32(16), 2405–2407 (2007). [CrossRef] [PubMed]
- H. Lin and J. Pu, “Propagation properties of partially coherent radially polarized beam in a turbulent atmosphere,” J. Mod. Opt. 56(11), 1296–1303 (2009). [CrossRef]
- Y. Cai, Q. Lin, H. T. Eyyuboğlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008). [CrossRef] [PubMed]
- Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, and Y. Baykal, “Average intensity and spreading of an elegant Hermite-Gaussian beam in turbulent atmosphere,” Opt. Express 17(13), 11130–11139 (2009). [CrossRef] [PubMed]
- O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004). [CrossRef]
- H. Roychowdhury, S. A. Ponomarenko, and E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt. 52(11), 1611–1618 (2005). [CrossRef]
- O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, “Changes in the polarization ellipse of random electromagnetic beams propagating through the turbulent atmosphere,” Waves Random Complex Media 15(3), 353–364 (2005). [CrossRef]
- Z. Chen and J. Pu, “Propagation characteristics of aberrant stochastic electromagnetic beams in a turbulent atmosphere,” J. Opt. A, Pure Appl. Opt. 9(12), 1123–1130 (2007). [CrossRef]
- H. Wang, X. Wang, A. Zeng, and W. Lu, “Changes in the coherence of quasi-monochromatic electromagnetic Gaussian Schell-model beams propagating through turbulent atmosphere,” Opt. Commun. 276(2), 218–221 (2007). [CrossRef]
- H. T. Eyyuboğlu, Y. Baykal, and Y. Cai, “Degree of polarization for partially coherent general beams in turbulent atmosphere,” Appl. Phys. B 89(1), 91–97 (2007). [CrossRef]
- Y. Cai, O. Korotkova, H. T. Eyyuboğlu, and Y. Baykal, “Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere,” Opt. Express 16(20), 15834–15846 (2008). [CrossRef] [PubMed]
- O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281(9), 2342–2348 (2008).
- O. Korotkova, Y. Cai, and E. Watson, “Stochastic electromagnetic beams for radar systems operating through turbulent atmosphere,” Appl. Phys. B 94(4), 681–690 (2009). [CrossRef]
- A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 2C14 (1990).
- R. Martinez-Herrero and P. M. Mejias, “Second-order spatial characterization of hard-edge diffracted beams,” Opt. Lett. 18(19), 1669–1671 (1993). [CrossRef] [PubMed]
- M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, and P. Vahimaa, “Spreading properties of beams radiated by partially coherent Schell-model sources,” J. Opt. Soc. Am. A 16(1), 106–112 (1999). [CrossRef]
- B. Zhang, X. Chu, and Q. Li, “Generalized beam-propagation factor of partially coherent beams propagating through hard-edged apertures,” J. Opt. Soc. Am. A 19(7), 1370–1375 (2002). [CrossRef]
- X. Ji, T. Zhang, and X. Jia, “Beam propagation factor of partially coherent Hermite–Gaussian array beams,” J. Opt. A, Pure Appl. Opt. 11(10), 105705 (2009). [CrossRef]
- G. Zhou, “Generalzied M2 factors of truncated partially coherent Lorentz and Lorentz-Gauss beams,” J. Opt. A, Pure Appl. Opt. 12(1), 015701 (2010).
- Y. Dan and B. Zhang, “Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere,” Opt. Express 16(20), 15563–15575 (2008). [CrossRef] [PubMed]
- Y. Dan and B. Zhang, “Second moments of partially coherent beams in atmospheric turbulence,” Opt. Lett. 34(5), 563–565 (2009). [CrossRef] [PubMed]
- Y. Yuan, Y. Cai, J. Qu, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere,” Opt. Express 17(20), 17344–17356 (2009). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.