OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12615–12621

Analysis of short range forces in opto-mechanical devices with a nanogap

Wolfram H.P. Pernice, Mo Li, Daniel Garcia-Sanchez, and Hong X. Tang  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12615-12621 (2010)
http://dx.doi.org/10.1364/OE.18.012615


View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ the finite-difference time-domain method to calculate the dominant short range forces in optomechanical devices, Casimir and gradient optical forces. Numerical results are obtained for typical silicon optomechanical devices and are compared to metallic reference structures, taking into account geometric and frequency dispersion of silicon. Our results indicate that although a small gap is desirable for operating optomechanical devices, the Casimir force offsets the gradient force in strongly coupled optomechanical devices, which has to be taken into account in the design of optical force tunable devices.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Optical Devices

History
Original Manuscript: May 10, 2010
Revised Manuscript: May 24, 2010
Manuscript Accepted: May 25, 2010
Published: May 27, 2010

Citation
Wolfram H. P. Pernice, Mo Li, Daniel Garcia-Sanchez, and Hong X. Tang, "Analysis of short range forces in opto-mechanical devices with a nanogap," Opt. Express 18, 12615-12621 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  2. W. Mo Li and P. H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009). [CrossRef]
  3. M. Li, W. H. Pernice, and H. X. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103(22), 223901 (2009). [CrossRef]
  4. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]
  5. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462(7269), 78–82 (2009). [CrossRef] [PubMed]
  6. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]
  7. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321(5893), 1172–1176 (2008). [CrossRef] [PubMed]
  8. W. H. Pernice, M. Li, K. Y. Fong, and H. X. Tang, “Modeling of the optical force between propagating lightwaves in parallel 3D waveguides,” Opt. Express 17(18), 16032–16037 (2009). [CrossRef] [PubMed]
  9. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30(22), 3042–3044 (2005). [CrossRef] [PubMed]
  10. A. Mizrahi and L. Schächter, “Mirror manipulation by attractive and repulsive forces of guided waves,” Opt. Express 13(24), 9804–9811 (2005). [CrossRef] [PubMed]
  11. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. 51, 793 (1948).
  12. S. K. Lamoreaux, “Demonstration of the Casimir Force in the 0.6 to 6μm Range,” Phys. Rev. Lett. 78(1), 5–8 (1997). [CrossRef]
  13. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso, “Quantum mechanical actuation of microelectromechanical systems by the Casimir force,” Science 291(5510), 1941–1944 (2001). [CrossRef] [PubMed]
  14. M. Bordag, U. Mohideen, and V. M. Mostepanenko, “New developments in the Casimir effect,” Phys. Rep. 353(1–3), 1–205 (2001). [CrossRef]
  15. S. K. Lamoreaux, “The Casimir force: background, experiments, and applications,” Rep. Prog. Phys. 68(1), 201–236 (2005). [CrossRef]
  16. F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan, “Casimir Forces and Quantum Electrodynamical Torques: Physics and Nanomechanics,” IEEE J. Sel. Top. Quantum Electron. 13(2), 400–414 (2007). [CrossRef]
  17. F. M. Serry, D. Walliser, and M. G. Jordan, “The role of the casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS),” J. Appl. Phys. 84(5), 2501 (1998). [CrossRef]
  18. J. Ma and M. L. Povinelli, “Large tuning of birefringence in two strip silicon waveguides via optomechanical motion,” Opt. Express 17(20), 17818–17828 (2009). [CrossRef] [PubMed]
  19. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705 (2010). [CrossRef] [PubMed]
  20. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nat. Photonics 3(8), 478–483 (2009). [CrossRef]
  21. T. Emig, A. Hanke, R. Golestanian, and M. Kardar, “Probing the strong boundary shape dependence of the Casimir force,” Phys. Rev. Lett. 87(26), 260402 (2001). [CrossRef]
  22. H. Gies and K. Klingmuller, “Worldline algorithms for Casimir configurations,” Phys. Rev. D Part. Fields Gravit. Cosmol. 74(4), 045002 (2006). [CrossRef]
  23. A. Rodriguez, M. Ibanescu, D. Iannuzzi, F. Capasso, J. D. Joannopoulos, and S. G. Johnson, “Computation and visualization of Casimir forces in arbitrary geometries: nonmonotonic lateral-wall forces and the failure of proximity-force approximations,” Phys. Rev. Lett. 99(8), 080401 (2007). [CrossRef] [PubMed]
  24. A. W. Rodriguez, A. P. McCauley, J. D. Joannopoulos, and S. G. Johnson, “Casimir forces in the time domain: Theory,” Phys. Rev. A 80(1), 012115 (2009). [CrossRef]
  25. A. P. McCauley, A. W. Rodriguez, J. D. Joannopoulos, and S. G. Johnson, “Casimir forces in the time domain: Applications,” Phys. Rev. A 81(1), 012119 (2010). [CrossRef]
  26. B. V. Deriagin, I. I. Abrikosova, and E. M. Lifshitz, “Direct measurement of molecular attraction between solids separated by a narrow gap,” Quart. Rev. 10(3), 295 (1956). [CrossRef]
  27. L. Bergström, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci. 70, 125–169 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited