OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12646–12652

Electrically controlled multifrequency ferroelectric cloak

Peining Li, Youwen Liu, and Yunji Meng  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12646-12652 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have suggested an electrically controlled multifrequency cloak with a single shell of ferroelectric material for the first time to the best of our knowledge. The theoretical and simulated results have demonstrated that this cloak with high-index ferroelectrics can reduce the total scattering cross section of the cloaked system at multiple frequencies. These cloaking frequencies of our cloak can be externally controlled since the dielectric constant of ferroelectrics is well tuned with the applied electric field. It may provide a potential way to design a tunable multifrequency cloak with considerable flexibility.

© 2010 OSA

OCIS Codes
(160.2260) Materials : Ferroelectrics
(260.2110) Physical optics : Electromagnetic optics
(290.5839) Scattering : Scattering, invisibility

ToC Category:
Physical Optics

Original Manuscript: January 26, 2010
Revised Manuscript: May 7, 2010
Manuscript Accepted: May 11, 2010
Published: May 28, 2010

Peining Li, Youwen Liu, and Yunji Meng, "Electrically controlled multifrequency ferroelectric cloak," Opt. Express 18, 12646-12652 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  4. G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localized resonances,” Proc. R. Soc. A 462(2074), 3027–3059 (2006). [CrossRef]
  5. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005). [CrossRef] [PubMed]
  6. M. G. Silveirinha, A. Alù, and N. Engheta, “Parallel-plate metamaterials for cloaking structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3), 036603 (2007). [CrossRef] [PubMed]
  7. F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for TE and TM polarizations,” N. J. Phys. 10(11), 115035 (2008). [CrossRef]
  8. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009). [CrossRef] [PubMed]
  9. P. Alitalo, O. Luukkonen, L. Jylhä, J. Venermo, and S. A. Tretyakov, “Transmission-Line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antenn. Propag. 56(2), 416–424 (2008). [CrossRef]
  10. Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102(9), 093901 (2009). [CrossRef] [PubMed]
  11. Y. Gao, J. P. Huang, and K. W. Yu, “Multifrequency cloak with multishell by using transformation medium,” J. Appl. Phys. 105(12), 124505 (2009). [CrossRef]
  12. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett. 100(11), 113901 (2008). [CrossRef] [PubMed]
  13. A. E. Serebryannikov and E. Ozbay, “Multifrequency invisibility and masking of cylindrical dielectric objects using double-positive and double-negative metamaterials,” J. Opt. A, Pure Appl. Opt. 11(11), 114020 (2009). [CrossRef]
  14. A. E. Serebryannikov, P. V. Usik, and E. Ozbay, “Non-ideal cloaking based on Fabry-Perot resonances in single-layer high-index,” Opt. Express 17(19), 16869–16876 (2009). [CrossRef] [PubMed]
  15. D. P. Gaillot, C. Croënne, and D. Lippens, “An all-dielectric route for terahertz cloaking,” Opt. Express 16(6), 3986–3992 (2008). [CrossRef] [PubMed]
  16. A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, and N. Setter, “Ferroelectric materials for microwave tunable applications,” J. Electroceram. 11(1/2), 5–66 (2003). [CrossRef]
  17. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009). [CrossRef] [PubMed]
  18. G. A. Smolensky, Ferroelectrics and Related Materials, (New York: Academic Press 1981).
  19. O. Vendik, Ferroelectrics at Microwave technology, (Moscow: Sov. Radio 1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited