OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12690–12701

Ion-exchanged Er3+/Yb3+ co-doped waveguide amplifiers longitudinally pumped by broad area lasers

V. Donzella, V. Toccafondo, S. Faralli, F. Di Pasquale, C. Cassagnettes, D. Barbier, and H. Hernandez Figueroa  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12690-12701 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multimode pumping scheme for Er3+/Yb3+ co-doped waveguide amplifiers based on broad area lasers at around 980 nm is presented. The proposed amplifier is fabricated by ion-exchange (IE) technique on silicate and phosphate glasses. The highly efficient energy transfer from Yb3+ to Er3+ ions, combined with the use of low cost and high power broad area laser, allows the realization of high performance and cost-effective integrated amplifiers. The structure has been designed and numerically studied using a 3D finite element modelling tool, and over 3 dB/cm small signal gain has been predicted for an optimized amplifier. Preliminary characterization of an amplifier structure provides a first experimental evidence of the novel multimode longitudinal pumping.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides
(130.2755) Integrated optics : Glass waveguides
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Integrated Optics

Original Manuscript: March 3, 2010
Revised Manuscript: May 6, 2010
Manuscript Accepted: May 11, 2010
Published: May 28, 2010

V. Donzella, V. Toccafondo, S. Faralli, F. Di Pasquale, C. Cassagnettes, D. Barbier, and H. Hernandez Figueroa, "Ion-exchanged Er3+/Yb3+ co-doped waveguide amplifiers longitudinally pumped by broad area lasers," Opt. Express 18, 12690-12701 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006). [CrossRef]
  2. K. Wada, D. H. Ahn, D. R. Lim, J. Michel, and L. C. Kimerling, “Si microphotonics for optical interconnection,” Thin Solid Films 508(1-2), 418–421 (2006). [CrossRef]
  3. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007). [CrossRef]
  4. L. H. Spiekman, J. M. Wiesenfeld, A. H. Gnauck, L. D. Garrett, G. N. van den Hoven, T. van Dongen, M. J. H. Sander-Jochem, and J. J. M. Binsma, “8x10Gb/s DWDM transmission over 240km of standard fiber using a cascade of semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(8), 1082–1084 (2000). [CrossRef]
  5. E.J. Murphy, “Integrated optical circuits and components: design and applications,” CRC press, 1 edition (Aug 3 1999)
  6. R. J. Beach, S. C. Mitchell, H. E. Meissner, O. R. Meissner, W. F. Krupke, J. M. McMahon, W. J. Bennett, and D. P. Shepherd, “Continuous-wave and passively Q-switched cladding-pumped planar waveguide lasers,” Opt. Lett. 26(12), 881–883 (2001). [CrossRef]
  7. P. Madasamy, S. Honkanen, D. F. Geraghty, and N. Peyghambarian, “Single-mode tapered waveguide laser in Er-doped glass with multimode-diode pumping,” Appl. Phys. Lett. 82(9), 1332 (2003). [CrossRef]
  8. L. Li, A. Schülzgen, V. L. Temyanko, T. Qiu, M. M. Morrell, Q. Wang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Short-length microstructured phosphate glass fiber lasers with large mode areas,” Opt. Lett. 30(10), 1141–1143 (2005). [CrossRef] [PubMed]
  9. J.-M. P. Delavaux, S. Granlund, O. Mizuhara, L. D. Tzeng, D. Barbier, M. Rattay, F. St. Andre, and A. Kevorkian, “Integrated optics erbium-ytterbium amplifier system in 10-Gb/s fiber transmission experiment,” IEEE Photon. Technol. Lett. 9(2), 247–249 (1997). [CrossRef]
  10. D. Barbier, J. M. Delavaux, A. Kevorkian, P. Gastaldo, and J. M. Jouanno, “Yb/Er integrated optics amplifers on phosphate glass in single and double- pass configuration,” in Proceedings of Optical Fiber Communications (OFC), San Diego, CA, USA, March 1995.
  11. F. Gardillou, L. Bastard, and J.-E. Broquin, “4.25 dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques,” Appl. Phys. Lett. 85(22), 5176–5178 (2004). [CrossRef]
  12. V. Toccafondo, S. Faralli and F. Di Pasquale, “Integrated Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” Paper JTha12 in Proceedings of Optical Fiber Communications (OFC), San Diego, CA, USA, Feb. 2008.
  13. F. Di Pasquale, S. Faralli, and V. Toccafondo, “Er3+/Yb3+ co-doped silica waveguide amplifiers longitudinally pumped by broad area lasers,” IEEE Photon. Technol. Lett. 19(24), 1967–1969 (2007). [CrossRef]
  14. V. Donzella, S. Faralli, and F. Di Pasquale, “Effect of Si-nc to Er3+ coupling ratio and multimode resonant pumping on EDWAs performance,” 21st Annual LEOS Meeting, WV 5, Nov. 2008.
  15. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004). [CrossRef]
  16. D. Barbier, M. Rattay, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.-M. P. Delavaux, and E. Murphy, “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon. Technol. Lett. 9(3), 315–317 (1997). [CrossRef]
  17. E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-Doped Silica Glass Optical Waveguide Amplifier,” IEEE J. Quantum Electron. 32(9), 1680–1684 (1996). [CrossRef]
  18. F. Rehouma and K. E. Aiadi, “Glasses for ion-exchange technology,” Int. J. Commun. 1(6), 148–155 (2008).
  19. J. Grelin, E. Ghibaudo, and J. E. Broquin, “Study of deeply buried waveguides: A way towards 3D integration,” Mater. Sci. Eng. B 149(2), 185–189 (2008). [CrossRef]
  20. V. Donzella, S. Faralli, V. Toccafondo, and F. Di Pasquale, “Effect of Si-nanocluster to Er3+ coupling ratio in EDWAs longitudinally pumped by visible broad area lasers,” J. Lightwave Technol. 27(12), 3342–3350 (2008). [CrossRef]
  21. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314–4320 (2001). [CrossRef]
  22. M. Federighi and F. Di Pasquale, “The Effect of Pair-Induced Energy Transfer on the Performance of Silica Waveguide Amplifiers with High Er3+/Yb3+ Concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995). [CrossRef]
  23. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among E3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3Al5O12,” J. Opt. Soc. Am. B 7(8), 1456–1462 (1990). [CrossRef]
  24. F. Di Pasquale and M. Federighi, “Modelling of Uniform and Pair- Induced Upconversion Mechanisms in High-Concentration Erbium-Doped Silica Waveguides,” IEEE J. Lightwave Technol. 13(9), 1858–1864 (1995). [CrossRef]
  25. J. Jin, The Finite Element Method in Electromagnetics, 2nd edition, (A Wiley-Interscience Publication, John Wiley & Sons, INC. 2002).
  26. K. Hayata, A. Misawa, and M. Koshiba, “Split-step finite-element method applied to nonlinear integrated optics,” J. Opt. Soc. Am. B 7(9), 1772–1784 (1990). [CrossRef]
  27. R. V. Ramaswamy and R. Srivastava, “Ion-Exchanged Glass Waveguides: A Review,” J. Lightwave Technol. 6(6), 984–1000 (1988). [CrossRef]
  28. I. Mozjerin, A. A. Hardy, and S. Ruschin, “Effect of chip area limitation on gain and noise of erbium-doped waveguide amplifiers,” IEEE J. Sel. Top. Quantum Electron. 11(1), 204–210 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited