OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12708–12718

Soliton mediated optical quantization in the transmission of one-dimensional photonic crystals

Falk Eilenberger, C. Martijn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12708-12718 (2010)
http://dx.doi.org/10.1364/OE.18.012708


View Full Text Article

Enhanced HTML    Acrobat PDF (2613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental and numerical observation of step-like behavior of the high-intensity transmission deep inside the bandgap of a 1D photonic crystal. We show this to be a novel manifestation of the quantization of the soliton area, and derive an upper limit for the energy of the transmission steps, which is consistent with measurements and simulations.

© 2010 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 10, 2010
Revised Manuscript: May 21, 2010
Manuscript Accepted: May 27, 2010
Published: May 28, 2010

Citation
Falk Eilenberger, C. Martijn de Sterke, and Benjamin J. Eggleton, "Soliton mediated optical quantization in the transmission of one-dimensional photonic crystals," Opt. Express 18, 12708-12718 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12708


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Dauxois, and M. Peyard, Physics of Solitons (Cambrdige University Press, 2006).
  2. Y. Kivshar, and G. Agrawal, Optical Solitons (Academic Press, San Diego, 2003).
  3. E. A. Ostrovskaya and Y. S. Kivshar, “Matter-wave gap solitons in atomic band-gap structures,” Phys. Rev. Lett. 90(16), 160407 (2003). [CrossRef] [PubMed]
  4. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424(6950), 817–823 (2003). [CrossRef] [PubMed]
  5. A. Sukhorukov, Y. Kivshar, H. Eisenberg, and Y. Silberberg, “Spatial optical solitons in waveguide arrays,” IEEE J. Quantum Electron. 39(1), 31–50 (2003). [CrossRef]
  6. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008). [CrossRef] [PubMed]
  7. S. Pereira, J. E. Sipe, J. E. Heebner, and R. W. Boyd, “Gap solitons in a two-channel microresonator structure,” Opt. Lett. 27(7), 536–538 (2002). [CrossRef]
  8. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. i. anomalous dispersion,” Appl. Phys. Lett. 23(3), 142–144 (1973). [CrossRef]
  9. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980). [CrossRef]
  10. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  11. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62(15), 1746–1749 (1989). [CrossRef] [PubMed]
  12. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141(1-2), 37–42 (1989). [CrossRef]
  13. C. M. de Sterke, and J. E. Sipe, in Progress in Optics XXXIII (Elsevier, Amsterdam, 1994), vol. XXXIII Chap. III.
  14. A. B. Aceves, C. De Angelis, and S. Wabnitz, “Generation of solitons in a nonlinear periodic medium,” Opt. Lett. 17(22), 1566–1568 (1992). [CrossRef] [PubMed]
  15. S. Wabnitz, “Pulse self-switching in optical fiber bragg gratings,” Opt. Commun. 114(1-2), 170–180 (1995). [CrossRef]
  16. J. Leon and A. Spire, “Gap soliton formation by nonlinear supratransmission in bragg media,” Phys. Lett. A 327(5-6), 474–480 (2004). [CrossRef]
  17. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58(2), 160–163 (1987). [CrossRef] [PubMed]
  18. B. Eggleton, R. Slusher, C. de Sterke, P. Krug, and J. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76(10), 1627–1630 (1996). [CrossRef] [PubMed]
  19. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2(11), 775–780 (2006). [CrossRef]
  20. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978). [CrossRef]
  21. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989). [CrossRef] [PubMed]
  22. B. J. Eggleton, C. Martijn de Sterke, and R. E. Slusher, “Bragg solitons in the nonlinear schrödinger limit: experiment and theory,” J. Opt. Soc. Am. B 16(4), 587–599 (1999). [CrossRef]
  23. I. C. M. Littler, T. Grujic, and B. J. Eggleton, “Photothermal effects in fiber Bragg gratings,” Appl. Opt. 45(19), 4679–4685 (2006). [CrossRef] [PubMed]
  24. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43(5), 2327–2335 (1972). [CrossRef]
  25. H. G. Winful, “Pulse-compression in optical fiber filters,” Appl. Phys. Lett. 46(6), 527–529 (1985). [CrossRef]
  26. J. E. Sipe and H. G. Winful, “Nonlinear Schroedinger solitons in a periodic structure,” Opt. Lett. 13(2), 132–133 (1988). [CrossRef] [PubMed]
  27. C. Martijn de Sterke and J. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42(1), 550–555 (1990). [CrossRef] [PubMed]
  28. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23(5), 328–330 (1998). [CrossRef]
  29. J. T. Mok, I. C. M. Littler, E. Tsoy, and B. J. Eggleton, “Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings,” Opt. Lett. 30(18), 2457–2459 (2005). [CrossRef] [PubMed]
  30. E. Golovchenko, E. Dianov, A. Prokhorov, and V. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).
  31. H. Weber and W. Hodel, “Propagation of subpicosecond pulses and soliton formation in an optical fiber,” Phys. Scr. T23, 200–205 (1988). [CrossRef]
  32. S. F. Mingaleev and Y. S. Kivshar, “Self-trapping and stable localized modes in nonlinear photonic crystals,” Phys. Rev. Lett. 86(24), 5474–5477 (2001). [CrossRef] [PubMed]
  33. P. Xie, Z.-Q. Zhang, and X. Zhang, “Gap solitons and soliton trains in finite-sized two-dimensional periodic and quasiperiodic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(2), 026607 (2003). [CrossRef] [PubMed]
  34. E. M. Wright, G. I. Stegeman, C. T. Seaton, J. V. Moloney, and A. D. Boardman, “Multisoliton emission from a nonlinear waveguide,” Phys. Rev. A 34(5), 4442–4444 (1986). [CrossRef] [PubMed]
  35. A. Grudinin, D. Richardson, and D. Payne, “Energy quantisation in figure eight fibre laser,” Electron. Lett. 28(1), 67–68 (1992). [CrossRef]
  36. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005). [CrossRef]
  37. S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett. 18(21), 908–911 (1967). [CrossRef]
  38. R. E. Slusher and H. M. Gibbs, “Self-induced transparency in atomic rubidium,” Phys. Rev. A 5(4), 1634–1659 (1972). [CrossRef]
  39. H. Giessen, A. Knorr, S. Haas, S. W. Koch, S. Linden, J. Kuhl, M. Hetterich, M. Grün, and C. Klingshirn, “Self-induced transmission on a free exciton resonance in a semiconductor,” Phys. Rev. Lett. 81(19), 4260–4263 (1998). [CrossRef]
  40. R. Landauer, “Spatial variation of currents and fields due to localized scatterers in metallic conduction,” IBM J. Res. Develop. 1(3), 223–231 (1957). [CrossRef]
  41. B. van Wees, H. van Houten, C. Beenakker, J. Williamson, L. Kouwenhoven, D. van der Marel, and C. Foxon, “Quantized conductance of point contacts in a two-dimensional electron gas,” Phys. Rev. Lett. 60(9), 848–850 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3761 KB)      QuickTime
» Media 2: AVI (3087 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited