OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12770–12778

Negative refractive index in coaxial plasmon waveguides

René de Waele, Stanley P. Burgos, Harry A. Atwater, and Albert Polman  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12770-12778 (2010)
http://dx.doi.org/10.1364/OE.18.012770


View Full Text Article

Enhanced HTML    Acrobat PDF (1983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically show that coaxial waveguides composed of a metallic core, surrounded by a dielectric cylinder and clad by a metal outer layer exhibit negative refractive index modes over a broad spectral range in the visible. For narrow dielectric gaps (10 nm GaP embedded in Ag) a figure-of-merit of 18 can be achieved at λ0 = 460 nm. For larger dielectric gaps the negative index spectral range extends well below the surface plasmon resonance frequency. By fine-tuning the coaxial geometry the special case of n = −1 at a figure-of-merit of 5, or n = 0 for a decay length of 500 nm can be achieved.

© 2010 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 12, 2010
Manuscript Accepted: May 14, 2010
Published: May 28, 2010

Citation
René de Waele, Stanley P. Burgos, Harry A. Atwater, and Albert Polman, "Negative refractive index in coaxial plasmon waveguides," Opt. Express 18, 12770-12778 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  3. J. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87, 221101 (2005). [CrossRef]
  4. A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88, 094104 (2006). [CrossRef]
  5. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999). [CrossRef]
  6. M. Sandtke, and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007). [CrossRef]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  8. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008). [CrossRef] [PubMed]
  9. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  10. H. Miyazaki, and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  11. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef] [PubMed]
  12. G. Shvets, “Photonic approach to making a material with a negative index of refraction,” Phys. Rev. B 67, 035109 (2003). [CrossRef]
  13. J. A. Dionne, E. Verhagen, A. Polman, and H. A. Atwater, “Are negative index materials achievable with surface plasmon waveguides? a case study of three plasmonic geometries,” Opt. Express 16, 19001–19017 (2008). [CrossRef]
  14. W. J. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced infrared transmission through subwavelength coaxial metallic arrays,” Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  15. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  16. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, “Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements,” Nano Lett. 9, 2832–2837 (2009). [CrossRef] [PubMed]
  17. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  18. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef] [PubMed]
  19. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006). [CrossRef] [PubMed]
  20. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  21. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). [CrossRef] [PubMed]
  22. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010). [CrossRef] [PubMed]
  23. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32, 551–553 (2007). [CrossRef] [PubMed]
  24. P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. E. Palik, ed., Handbook of optical constants of solids (Academic Press, Inc., Orlando, FL., 1985).
  26. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007). [CrossRef]
  27. M. Meier, and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8, 581–583 (1983). [CrossRef] [PubMed]
  28. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited