OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12839–12851

Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity

M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12839-12851 (2010)
http://dx.doi.org/10.1364/OE.18.012839


View Full Text Article

Enhanced HTML    Acrobat PDF (1291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: A system of differential equations describing, neglecting diffraction, the propagation of laser radiation in a medium with birefringence and cubic nonlinearity is derived. It is shown that the efficiency of depolarization compensation by means of a 90° polarization rotator or a Faraday mirror decreases with increasing В-integral (nonlinear phase incursion). Comparison of the effectiveness of the considered method in the case of incident linear and circular polarization showed that for the circular polarization the optimal angle of polarization rotator is different from 90° and the degree of polarization is less than for the linear one.

© 2010 OSA

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 22, 2010
Revised Manuscript: May 26, 2010
Manuscript Accepted: May 26, 2010
Published: June 1, 2010

Citation
M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, "Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity," Opt. Express 18, 12839-12851 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Koechner, Solid-State LaserEengineering (Berlin: Springer, 1999).
  2. R. Menzel, Photonics. (Berlin: Springer, 2001). [PubMed]
  3. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971). [CrossRef]
  4. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979). [CrossRef]
  5. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980). [CrossRef]
  6. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002). [CrossRef]
  7. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005). [CrossRef]
  8. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002). [CrossRef] [PubMed]
  9. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002). [CrossRef]
  10. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” J. Quantum Electron. 33(10), 876–882 (2003). [CrossRef]
  11. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004). [CrossRef]
  12. V. N. Gol'dberg, V. I. Talanov, and R. E. Erm, ““Self-focusing of axially-symmetrical wave beams,” Izv. VUZov,” Radiofiz. 10, 674–685 (1967).
  13. D. R. Speck, E. Bliss, J. Glaze, J. Herris, F. Holloway, J. Hunt, B. Johnson, D. Kuizenga, R. Ozarski, H. Patton, P. Rupert, G. Suski, C. Swift, and C. Thompson, “The shiva laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1599–1619 (1981). [CrossRef]
  14. J. Bunkenberg, J. Boles, D. C. Brown, J. Eastman, J. Hoose, R. Hopkins, L. Iwan, S. D. Jacobs, J. H. Kelly, S. Kumpan, S. Letzring, D. Lonobile, L. D. Lund, G. Mourou, S. Refermat, W. Seka, J. M. Soures, and K. Walse, “The omega high-power phosphate-glass system: design and performance,” IEEE J. Quantum Electron. QE-17(9), 1620–1628 (1981). [CrossRef]
  15. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).
  16. S. N. Vlasov, V. I. Kryzhanovskiĭ, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982). [CrossRef]
  17. V. N. Alekseev, D. I. Dmitriev, A. N. Zhilin, and V. N. Chernov, “Depolarization of the exit beam of a neodymium-glass amplifier in the case of small-scale self-focusing,” Sov. J. Quantum Electron. 13(4), 533–534 (1983). [CrossRef]
  18. Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).
  19. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964). [CrossRef]
  20. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. J. Exp. Theor. Phys. 31, 486 (1970).
  21. D. V. Vlasov, V. V. Korobkin, and R. V. Serov, “Nonlinear precession of elliptically polarized Gaussian beams,” J. Quantum Electron. 9(7), 904–907 (1979). [CrossRef]
  22. D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977). [CrossRef]
  23. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971). [CrossRef]
  24. G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622–1 - 036622–16 (2003). [CrossRef]
  25. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31(7), 488–503 (1941). [CrossRef]
  26. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and polarized light (Amsterdam-New York-Oxford: (North-Holland Publishing Ccmpany, 1977).
  27. W. Seka, J. Soures, O. Lewis, J. Bunkenburg, D. Brown, S. Jacobs, G. Mourou, and J. Zimmermann, “High-power phosphate-glass laser system: design and performance characteristics,” Appl. Opt. 19(3), 409–419 (1980). [CrossRef] [PubMed]
  28. A. K. Poteomkin, A. V. Kirsanov, M. A. Martyanov, E. A. Khazanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009). [CrossRef]
  29. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal'shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4(6), 421–427 (2007). [CrossRef]
  30. A. K. Poteomkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal'shakov, M. A. Martyanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaykin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” J. Quantum Electron. 35(4), 302–310 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited