OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12852–12863

Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers

Mingying Peng, Benjamin Sprenger, Markus A. Schmidt, Harald Schwefel, and Lothar Wondraczek  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12852-12863 (2010)
http://dx.doi.org/10.1364/OE.18.012852


View Full Text Article

Enhanced HTML    Acrobat PDF (1701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel type of Bi-doped crystal that exhibits ultrabroadband photoluminescence in the near infrared (NIR). Emission centers can be generated and degenerated reversibly by annealing the material in CO atmosphere and air, respectively, indicating that emission is related to the presence of Bi-species in low valence states. Correlating static and dynamic excitation and emission data with the size and charge of available lattice sites suggests that two types of Bi0-species, each located on one of the two available Ba2+ lattice sites, are responsible for NIR photoemission. This is further confirmed by the absence of NIR emission in polycrystalline Ca2P2O7:Bi and Sr2P2O7:Bi. Excitation is assigned to transitions between the doubly degenerated ground state 4S3/2 and the degenerated excited levels 2D3/2, 2D5/2 and 2P1/2, respectively. NIR emission is attributed to 2D3/24S3/2. The NIR emission center can coexist with Bi2+ species. Then, also Bi2+ is accommodated on one of the two Ba2+-sites. Energy transfer between Bi2+ ions occurs within a critical distance of 25.9 Å.

© 2010 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials

ToC Category:
Materials

History
Original Manuscript: April 13, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: May 27, 2010
Published: June 1, 2010

Citation
Mingying Peng, Benjamin Sprenger, Markus A. Schmidt, Harald G. L. Schwefel, and Lothar Wondraczek, "Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers," Opt. Express 18, 12852-12863 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Zhou, N. Jiang, B. Zhu, H. Yang, S. Ye, G. Lakshminarayana, J. Hao, and J. Qiu, “Multifunctional bismuth-doped nanoporous silica glass: from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers,” Adv. Funct. Mater. 18(9), 1407–1413 (2008). [CrossRef]
  2. S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett. 77(6), 818–820 (2000). [CrossRef]
  3. Y. Fujimoto and M. Nakatsuka, “Infrared luminescence from bismuth-doped silica glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001). [CrossRef]
  4. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004). [CrossRef] [PubMed]
  5. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005). [CrossRef] [PubMed]
  6. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007). [CrossRef]
  7. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005). [CrossRef]
  8. I. Razdobreev, L. Bigot, V. Pureur, A. Favre, G. Bouwmans, and M. Douay, “Efficient all-fiber bismuth-doped laser,” Appl. Phys. Lett. 90(3), 031103 (2007). [CrossRef]
  9. R. S. Quimby, R. L. Shubochkin, and T. F. Morse, “High quantum efficiency of near-infrared emission in bismuth doped AlGeP-silica fiber,” Opt. Lett. 34(20), 3181–3183 (2009). [CrossRef] [PubMed]
  10. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007). [CrossRef]
  11. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and K. N. Boldyrev, “Near-infrared luminescence of RbPb2Cl5:Bi crystals,” Opt. Lett. 33(19), 2182–2184 (2008). [CrossRef] [PubMed]
  12. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008). [CrossRef] [PubMed]
  13. J. Ruan, L. Su, J. Qiu, D. Chen, and J. Xu, “Bi-doped BaF2 crystal for broadband near-infrared light source,” Opt. Express 17(7), 5163–5169 (2009). [CrossRef] [PubMed]
  14. L. Su, J. Yu, P. Zhou, H. Li, L. Zheng, Y. Yang, F. Wu, H. Xia, and J. Xu, “Broadband near-infrared luminescence in γ-irradiated Bi-doped α-BaB(2)O(4) single crystals,” Opt. Lett. 34(16), 2504–2506 (2009). [CrossRef] [PubMed]
  15. L. Su, P. Zhou, J. Yu, H. Li, L. Zheng, F. Wu, Y. Yang, Q. Yang, and J. Xu, “Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials,” Opt. Express 17(16), 13554–13560 (2009). [CrossRef] [PubMed]
  16. H. T. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, “Superbroadband near-IR nano-optical source based on bismuth-doped high-silica nanocrystalline zeolites,” Opt. Lett. 34(8), 1219–1221 (2009). [CrossRef] [PubMed]
  17. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence characteristics of Te- and Bi-doped glasses and glass-ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007). [CrossRef]
  18. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009). [CrossRef] [PubMed]
  19. T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-Ray absorption fine structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007). [CrossRef]
  20. Y. Fujimoto, “Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass,” J. Am. Ceram. Soc. 93(2), 581–589 (2010). [CrossRef]
  21. I. Razdobreev, V. Y. Ivanov, L. Bigot, M. Godlewski, and E. F. Kustov, “Optically detected magnetic resonance in bismuth-doped silica glass,” Opt. Lett. 34(17), 2691–2693 (2009). [CrossRef] [PubMed]
  22. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Luminescence properties of bismuth-doped lime silicate glasses,” J. Alloy. Comp. 463(1-2), L5–L8 (2008). [CrossRef]
  23. N. Kumada, N. Takahashi, N. Kinomura, and A. W. Sleight, “Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3,” J. Solid State Chem. 126(1), 121–126 (1996). [CrossRef]
  24. G. Dong, X. Xiao, J. Ren, J. Ruan, X. Liu, J. Qiu, C. Lin, H. Tao, and X. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008). [CrossRef]
  25. B. Denker, B. Galagan, V. Osiko, S. Sverchkov, and E. Dianov, “Luminescent properties of Bi-doped boro-alumino-phosphate glasses,” Appl. Phys. B 87(1), 135–137 (2007). [CrossRef]
  26. J. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996). [CrossRef]
  27. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005). [CrossRef] [PubMed]
  28. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007). [CrossRef]
  29. S. Zhou, W. Lei, N. Jiang, J. Hao, E. Wu, H. Zeng, and J. Qiu, “Space-selective control of luminescence inside the Bi-doped mesoporous silica glass by a femtosecond laser,” J. Mater. Chem. 19(26), 4603–4608 (2009). [CrossRef]
  30. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008). [CrossRef]
  31. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg-Al-Si oxide glass system,” Appl. Phys. B 95(4), 801–805 (2009). [CrossRef]
  32. M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria–alumina–silica glass,” Opt. Mater. 32(2), 368–373 (2009). [CrossRef]
  33. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008). [CrossRef] [PubMed]
  34. J. Qiu, X. Jiang, C. Zhu, M. Shirai, J. Si, N. Jiang, and K. Hirao, “Manipulation of gold nanoparticles inside transparent materials,” Angew. Chem. Int. Ed. 43(17), 2230–2234 (2004). [CrossRef]
  35. M. Peng, Q. Zhao, J. Qiu, and L. Wondraczek, “Generation of emission centers for broadband NIR luminescence in bismuthate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc. 92(2), 542–544 (2009). [CrossRef]
  36. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009). [CrossRef]
  37. http://www.ill.eu/sites/fullprof/ (2009).
  38. A. ElBelghitti, A. Elmarzouki, A. Boukhari, and E. M. Holt, “σ-dibarium pyrophosphate,” Acta Crystallogr. C 51(8), 1478–1480 (1995). [CrossRef]
  39. M. Peng and L. Wondraczek, “Bi2+-doped strontium borates for white-light-emitting diodes,” Opt. Lett. 34(19), 2885–2887 (2009). [CrossRef] [PubMed]
  40. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009). [CrossRef] [PubMed]
  41. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131–144 (1969).
  42. G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986). [CrossRef]
  43. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4: Eu2+ phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003). [CrossRef]
  44. J. Slater, Quantum theory of molecules and solids, Symmetry and energy bands in crystals, (McGraw-Hill Inc. 1965) Vol. 2 pg. 55.
  45. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976). [CrossRef]
  46. S. Boudin, A. Grandin, M. Borel, A. Leclaire, and B. Raveau, “Redetermination of the β-Ca2P207 structure,” Acta Crystallogr. C 49(12), 2062 (1993). [CrossRef]
  47. J. Barbier and J. Echard, “A new refinement of α-Sr2P2O7,” Acta Crystallogr. C 54(12), IUC9800070 (1998). [CrossRef]
  48. Y. Qiu and Y. Shen, “Investigation on the spectral characteristics of bismuth doped silica fibers,” Opt. Mater. 31(2), 223–228 (2008). [CrossRef]
  49. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  50. V. Dvoirin, V. Mashinsky, O. Medvedkov, A. Umnikov, A. Gur’yanov, and E. Dianov, “Bismuth-doped telecommunication fibres for lasers and amplifiers in the 1400-1500-nm region,” Quantum Electron. 39(6), 583–584 (2009). [CrossRef]
  51. V. Truong, L. Bigot, A. Lerouge, M. Douay, and I. Razdobreev, “Study of thermal stability and luminescence quenching properties of bismuth doped silicate glasses for fiber laser applications,” Appl. Phys. Lett. 92(4), 041908 (2008). [CrossRef]
  52. Z. Xu-hui and L. Jian-bang, “A hollow cathode bismuth ion laser,” Appl. Phys. B 29(4), 291–292 (1982). [CrossRef]
  53. M. Chou and T. Cool, “Laser operation by dissociation of metal complexes: New transitions in arsenic, bismuth, gallium, germanium, mercury, indium, lead, antimony, and thallium,” J. Appl. Phys. 47, 1055–1061 (1976). [CrossRef]
  54. S. Drosch and G. Gerber, “Optically pumped cw molecular bismuth laser,” J. Chem. Phys. 77(1), 123–130 (1982). [CrossRef]
  55. E. Goovaerts, S. Nistor, and D. Schoemaker, “Electron-spin-resonance and optical study of the Bi0(6p3) center in KCl,” Phys. Rev. B 42(7), 3810–3817 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited