OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12890–12896

Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform

Jianfei Wang, Juejun Hu, Piotr Becla, Anuradha M. Agarwal, and Lionel C. Kimerling  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12890-12896 (2010)
http://dx.doi.org/10.1364/OE.18.012890


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we demonstrate high optical quantum efficiency (90%) resonant-cavity-enhanced mid-infrared photodetectors fabricated monolithically on a silicon platform. High quality photoconductive polycrystalline PbTe film is thermally evaporated, oxygen-sensitized at room temperature and acts as the infrared absorber. The cavity-enhanced detector operates in the critical coupling regime and shows a peak responsivity of 100 V/W at the resonant wavelength of 3.5 μm, 13.4 times higher compared to blanket PbTe film of the same thickness. Detectivity as high as 0.72 × 109 cmHz1/2W−1 has been measured, comparable with commercial polycrystalline mid-infrared photodetectors. As low temperature processing (< 160 °C) is implemented in the entire fabrication process, our detector is promising for monolithic integration with Si readout integrated circuits.

© 2010 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(040.5150) Detectors : Photoconductivity
(040.5160) Detectors : Photodetectors
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Detectors

History
Original Manuscript: April 26, 2010
Revised Manuscript: May 25, 2010
Manuscript Accepted: May 25, 2010
Published: June 1, 2010

Citation
Jianfei Wang, Juejun Hu, Piotr Becla, Anuradha M. Agarwal, and Lionel C. Kimerling, "Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform," Opt. Express 18, 12890-12896 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12890


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009). [CrossRef]
  2. M. T. Rodrigo, F. J. Sánchez, M. C. Torquemada, V. Villamayor, G. Vergara, M. Verdú, L. J. Gómez, J. Diezhandino, R. Almazán, P. Rodríguez, J. Plaza, I. Catalán, and M. T. Montojo, “Polycrystalline lead selenide x–y addressed uncooled focal plane arrays,” Infrared Phys. Technol. 44(4), 281–287 (2003). [CrossRef]
  3. T. S. Moss, “Lead salt photoconductors,” Proc. IRE 43, 1869–1881 (1955).
  4. D. E. Bode, T. H. Johnson, and B. N. McLean, “Lead selenide detectors for intermediate temperature operation,” Appl. Opt. 4(3), 327–331 (1965). [CrossRef]
  5. A. A. Dobrovolsky, Z. M. Dashevsky, V. A. Kasiyan, L. I. Ryabova, and D. R. Khokhlov, “Photoconductivity of oxidized nanostructured PbTe(In) films,” Semicond. Sci. Technol. 24(7), 075010 (2009). [CrossRef]
  6. Z. Dashevsky, E. Shufer, V. Kasiyan, E. Flitsiyan, and L. Chernyak, “Influence of oxygen treatment on transport properties of PbTe:In polycrystalline films,” Physica B 405(10), 2380–2384 (2010). [CrossRef]
  7. J. Wang, J. Hu, P. Becla, A. Agarwal, and L. C. Kimerling, Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA 02139, are preparing a manuscript to be called “Highly textured, room-temperature-sensitized nanocrystalline PbTe film on silicon for infrared detection.”
  8. M. S. Unlu and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78(2), 607–639 (1995). [CrossRef]
  9. M. Boberl, T. Fromherz, T. Schwarzl, G. Springholz, and W. Heiss, “IV–VI resonant-cavity enhanced photodetectors for the mid-infrared,” Semicond. Sci. Technol. 19(12), L115–L117 (2004). [CrossRef]
  10. M. Arnold, D. Zimin, and H. Zogg, “Resonant-cavity-enhanced photodetectors for the mid-infrared,” Appl. Phys. Lett. 87(14), 141103 (2005). [CrossRef]
  11. J. G. A. Wehner, C. A. Musca, R. H. Sewell, J. M. Dell, and L. Faraone, “Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors,” Appl. Phys. Lett. 87(21), 211104 (2005). [CrossRef]
  12. J. Wang, J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Cavity-enhanced multispectral photodetector using phase-tuned propagation: theory and design,” Opt. Lett. 35(5), 742–744 (2010). [CrossRef] [PubMed]
  13. X. C. Sun, J. J. Hu, C. Y. Hong, J. F. Viens, X. M. Duan, R. Das, A. M. Agarwal, and L. C. Kimerling, “Multispectral pixel performance using a one-dimensional photonic crystal design,” Appl. Phys. Lett. 89(22), 223522 (2006). [CrossRef]
  14. M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of Optical Microresonator Devices,” in Microresonators as Building Blocks for VLSI Photonics, F. Michelotti, A. Driessen, and M. Bertolotti, eds. (AIP Conference Proceedings, Melville, New York, 2004).
  15. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16(12), 1214–1222 (1983). [CrossRef]
  16. J. Wang, J. Hu, X. Sun, A. M. Agarwal, L. C. Kimerling, D. R. Lim, and R. A. Synowicki, “Structural, electrical, and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys. 104(5), 053707 (2008). [CrossRef]
  17. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Exploration of Waveguide Fabrication From Thermally Evaporated Ge-Sb-S Glass Films,” Opt. Mater. 30(10), 1560–1566 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited