OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12897–12902

Electron beam excitation assisted optical microscope with ultra-high resolution

Wataru Inami, Kentaro Nakajima, Atsuo Miyakawa, and Yoshimasa Kawata  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12897-12902 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

© 2010 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(110.0180) Imaging systems : Microscopy

ToC Category:

Original Manuscript: April 27, 2010
Revised Manuscript: May 19, 2010
Manuscript Accepted: May 27, 2010
Published: June 1, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Wataru Inami, Kentaro Nakajima, Atsuo Miyakawa, and Yoshimasa Kawata, "Electron beam excitation assisted optical microscope with ultra-high resolution," Opt. Express 18, 12897-12902 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philos. Mag. 6, 356-362 (1928).
  2. E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature 237, 510-512 (1972). [CrossRef] [PubMed]
  3. D. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ /20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  4. E. Betzig and M. Isaacson, "Collection mode near-field scanning optical microscopy," Appl. Phys. Lett. 51, 2088-2090 (1987). [CrossRef]
  5. E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992). [CrossRef] [PubMed]
  6. S. Mononobe, T. Saiki, T. Suzuki, S. Koshihara and M. Ohtsu, "Fabrication of a triple tapered probe for nearfield optical spectroscopy in UV region based on selective etching of a multistep index fiber," Opt. Commun. 146, 45-48 (1998). [CrossRef]
  7. M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum Publishers, New York, 1999). [CrossRef]
  8. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  9. I. Inouye and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19, 159-161 (1994). [CrossRef] [PubMed]
  10. M. Gu and P. C. Ke, "Image enhancement in near-field scanning optical microscopy with laser-trapped metallic particles," Opt. Lett. 24, 74-76 (1999). [CrossRef]
  11. J. G. Kim, T. H. Kim, H. Choi, Y. J. Yoon, Y. Jeong, N. C. Park, H. Yang and Y. P. Park, "Improved air-gap control for SIL-based near- field recording system," IEEE Trans. on Magn. 43, 811-813 (2007). [CrossRef]
  12. Y. Kawata, C. Egamia, O. Nakamura, O. Sugihara, N. Okamoto, M. Tsuchimori, and O. Watanabe, "Nonoptically probing near-field microscopy," Opt. Commun. 161, 6-12 (1999). [CrossRef]
  13. E. Betzig, P. L. Finn, and J. S. Weiner, "Combined shear force and near-field scanning optical microscopy," Appl. Phys. Lett. 60, 2484-2486 (1992). [CrossRef]
  14. R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, "Near]field differential scanning optical microscope with atomic force regulation," Appl. Phys. Lett. 60, 2957-2959 (1992). [CrossRef]
  15. K. Karrai and R. D. Grober, "Piezoelectric tip]sample distance control for near field optical microscopes," Appl. Phys. Lett. 66, 1842-1844 (1995). [CrossRef]
  16. J. W. P. Hsu, M. Lee, and B. S. Deaver, "A nonoptical tip?sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system," Rev. Sci. Instrum. 66, 3177-3181 (1995). [CrossRef]
  17. J. Barenz, O. Hollricher, and O. Marti, "An easy-to-use nonoptical shear-force distance control for near-field optical microscopes," Rev. Sci. Instrum. 67, 1912-1916 (1996). [CrossRef]
  18. M. Lee, B. McDaniel, and J. W. P. Hsu, "An impedance based non]contact feedback control system for scanning probe microscopes," Rev. Sci. Instrum. 67, 1468-1471 (1996). [CrossRef]
  19. D. P. Tsai and Y. Y. Lu, "Tapping-mode tuning fork force sensing for near-field scanning optical microscopy," Appl. Phys. Lett. 73, 2724-2726 (1998). [CrossRef]
  20. U. Fano, "A theory on cathode luminescence," Phys. Rev. 58, 544-553 (1940). [CrossRef]
  21. F. J. Garcıa de Abajo, "Optical excitations in electron microscopy," Rev. Mod. Phys. 82, 209-275 (2010). [CrossRef]
  22. A. R. Zanatta, C. T. M. Ribeiro and U. Jahn, "Photon and electron excitation of rare-earth-doped amorphous SiN films," J. Non-Cryst. Solids 338-340, 473-476 (2004). [CrossRef]
  23. E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen.Wahrnehmung," Arch. Mikrosk. Anat. 9,413-468 (1873). [CrossRef]
  24. D. C. Joy, Monte Carlo Modeling for Electron Microscopy and Microanalysis (Oxford University Press, 1995).
  25. T. Matsuyama and Y. Kawata, "Control of Alignment Regularity and Density of Nanodots by Changing Concentration and Molecular Weight of Self-Assembling Diblock Copolyme," Jpn. J. Appl. Phys. 45, L20-L22 (2006). [CrossRef]
  26. T. Matsuyama and Y. Kawata, "Fabrication of Fluorescent Nanodot Arrays on Metal Films for Application in Near-Field Optical Media," Jpn. J. Appl. Phys. 45, 1438-1441 (2006). [CrossRef]
  27. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science 268, 1466-1468 (1995). [CrossRef] [PubMed]
  28. H. Yu, T. Iyoda, and T. Ikeda, "Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions," J. Am. Chem. Soc. 128, 11010-11011 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited