OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12939–12947

Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation

Sergejs Makovejs, David S. Millar, Domanic Lavery, Carsten Behrens, Robert I. Killey, Seb J. Savory, and Polina Bayvel  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 12939-12947 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper long-haul, single channel, polarization multiplexed 16-state quadrature amplitude modulation (PDM-QAM-16) transmission at 112Gbit/s is investigated. Novel digital signal processing techniques are used to perform carrier phase estimation and symbol estimation, in combination with nonlinear digital backpropagation. The results obtained demonstrate that the use of digital nonlinear backpropagation increases the optimum launch power from −4dBm to −1dBm with a consequent increase in maximum reach from 1440km to 2400km, which is a record transmission distance for QAM-16 reported to date for an SMF link with EDFAs only. Furthermore, experimental measurements are supported by simulations, based on the link used in the experiment.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 26, 2010
Revised Manuscript: April 17, 2010
Manuscript Accepted: April 19, 2010
Published: June 2, 2010

Sergejs Makovejs, David S. Millar, Domanic Lavery, Carsten Behrens, Robert I. Killey, Seb J. Savory, and Polina Bayvel, "Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation," Opt. Express 18, 12939-12947 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Transmission of 100 Gb/s coherent PDM-QPSK over 16 x 100 km of standard fiber with allerbium amplifiers,” Opt. Express 17(7), 5112–5119 (2009). [CrossRef] [PubMed]
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4-Tbit/s capacity over 2550km using PDM QPSK modulation format and coherent detection,” J. Lightwave Technol. 27(3), 153–157 (2009). [CrossRef]
  3. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol. 28(4), 547–556 (2010). [CrossRef]
  4. L. Molle, M. Seimetz, D.-D. Gross, R. Freund, and M. Rohde, “Polarization multiplexed 20 Gbaud square 16QAM long-haul transmission over 1120km using EDFA amplification,” Proc. of ECOC, paper 8.4.4, Vienna, Austria (2009).
  5. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009). [CrossRef] [PubMed]
  6. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Novel method of generating QAM-16 signals at 21.3 Gbaud and transmission over 480 km,” IEEE Photon. Technol. Lett. 22(1), 36–38 (2010). [CrossRef]
  7. J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang, “A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal,” IEEE Photon. Technol. Lett. 22(2), 115–117 (2010). [CrossRef]
  8. K. Miyauchi, S. Seki, and H. Ishio, “New technique for generating and detecting multilevel signal formats,” IEEE Trans. Commun. 24(2), 263–267 (1976). [CrossRef]
  9. T. Sakamoto, A. Chiba, and T. Kawanishi, “50-km SMF transmission of 50-Gb/s 16QAM generated by quad-parallel MZM,” Proc. of ECOC, paper Tu.1.E.3, Brussels, Belgium (2008).
  10. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and Extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection”, Proc. OFC, paper PDPB7, Sam Diego, USA (2010).
  11. H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett. 22(5), 344–346 (2010). [CrossRef]
  12. C. R. Doerr, P. J. Winzer, L. Zhang, L. L. Buhl, and N. J. Sauer, “Monolithic InP 16-QAM modulator,” Proc. of OFC, paper PDP20, San Diego, USA (2008).
  13. X. Zhou, and J. Yu, “200-Gb/s PDM-16QAM generation using a new synthesizing method,” Proc. of ECOC, paper 10.3.5, Vienna, Austria (2009).
  14. S. Makovejs, D. S. Millar, V. Mikhailov, G. Gavioli, R. I. Killey, S. J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 at 112 Gbit/s over 2400 km,”, Proc. of OFC, paper OMJ6, San Diego, USA (2010).
  15. S. Makovejs, G. Gavioli, V. Mikhailov, R. I. Killey, and P. Bayvel, “Experimental and numerical investigation of bit-wise phase-control OTDM transmission,” Opt. Express 16(23), 18725–18730 (2008). [CrossRef]
  16. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008). [CrossRef] [PubMed]
  17. D. S. Millar, S. Makovejs, V. Mikhailov, R. I. Killey, P. Bayvel, and S. J. Savory, “Experimental comparison of nonlinear compensation in long-haul PDM-QPSK transmission at 42.7 and 85.4 Gb/s,” Proc. of ECOC, paper 9.4.4, Vienna, Austria (2009).
  18. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009). [CrossRef]
  19. D. C. Rife and R. C. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory 20(5), 591–598 (1974). [CrossRef]
  20. J. G. Proakis, and M. Salehi, Digital Communications (McGraw-Hill, 5th Ed., 2008), pp. 296–304.
  21. S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. Theory 28(2), 129–137 (1982). [CrossRef]
  22. A. Chiba, T. Sakamoto, and T. Kawanishi, “Adaptive symbol discrimination method for distorted multilevel optical signal and its application to decoding of high-speed optical quadrature amplitude modulation,” Proc. of OFC, paper JWA63, San Diego, USA (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited