OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12971–12979

Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12971-12979 (2010)
http://dx.doi.org/10.1364/OE.18.012971


View Full Text Article

Enhanced HTML    Acrobat PDF (4373 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid-mode waveguides consisting of a metal surface separated from a high index medium by a low index spacer have attracted much interest recently. Power is concentrated in the low index spacer region for this waveguide. Here we investigate the properties of the hybrid mode in detail and numerically demonstrate the possibility of realizing compact waveguide bends using this wave guiding scheme.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: March 22, 2010
Revised Manuscript: April 13, 2010
Manuscript Accepted: April 13, 2010
Published: June 2, 2010

Citation
M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, "Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends," Opt. Express 18, 12971-12979 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  3. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  6. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30(24), 3359–3361 (2005). [CrossRef]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  8. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  9. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripe on gold as surface plasmon waveguides,” Appl. Phys. Lett. 88(9), 094104 (2006). [CrossRef]
  10. M. Yan and M. Qiu, “Compact optical waveguides based on hybrid index and surface-plasmon-polariton guidance mechanisms,” Act. Passive Electron. Compon. 52461, (2007).
  11. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” CLEO/QELS 2007, http://www.opticsinfobase.org/abstract.cfm?uri=CLEO-2007-JThD112 .
  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  13. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of sub-wavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett. 21(6), 362–364 (2009). [CrossRef]
  14. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  15. R. F. Oulton, G. Bartal, D. F. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008). [CrossRef]
  16. R. Buckley and P. Berini, “Figures of merit for 2D surface plasmon waveguides and application to metal stripes,” Opt. Express 15(19), 12174–12182 (2007). [CrossRef] [PubMed]
  17. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  18. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005). [CrossRef]
  19. Electromagnetics Module User’s Guide (Comsol, 2007).
  20. E. D. Palik, Handbook of optical constants of solids, (Academic Press, Inc. 1985).
  21. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Berlin, 1988).
  22. FDTD Solutions Reference Guide, (Lumerical Solutions, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited