OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 12980–12991

Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping

Chun Ge, Meng Lu, Xun Jian, Yafang Tan, and Brian T. Cunningham  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 12980-12991 (2010)
http://dx.doi.org/10.1364/OE.18.012980


View Full Text Article

Enhanced HTML    Acrobat PDF (17481 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fabrication of visible wavelength vertically emitting distributed feedback (DFB) lasers with a subwavelength grating fabricated by a replica molding process and an active polymer layer printed by a horizontal dipping process is reported. The combined techniques enable the organic DFB laser to be uniformly fabricated over large surface areas upon a flexible plastic substrate, with an approach that is compatible with roll-based manufacturing. Using a fixed grating period and depth, DFB laser output wavelength is controlled over a 35 nm range through manipulation of the waveguide layer thickness, which is controlled by the speed of the horizontal dipping process. We also demonstrate that the active area of the structure may be photolithographically patterned to create dense arrays of discrete DFB lasers.

© 2010 OSA

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(250.2080) Optoelectronics : Polymer active devices
(250.7270) Optoelectronics : Vertical emitting lasers
(310.6860) Thin films : Thin films, optical properties
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 5, 2010
Revised Manuscript: May 30, 2010
Manuscript Accepted: May 30, 2010
Published: June 2, 2010

Citation
Chun Ge, Meng Lu, Xun Jian, Yafang Tan, and Brian T. Cunningham, "Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping," Opt. Express 18, 12980-12991 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-12980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers,” Chem. Rev. 107(4), 1272–1295 (2007). [CrossRef] [PubMed]
  2. G. Morthier, W. D’Oosterlinck, and K. Huybrechts, “All-optical flip-flops based on DFB laser diodes and DFB-arrays,” J. Mater. Sci. Mater. Electron. 20(S1), 385–389 (2009). [CrossRef]
  3. C. Ge, M. Lu, W. Zhang, and B. T. Cunningham, “Distributed feedback laser biosensor incorporating a titanium dioxide nanorod surface,” Appl. Phys. Lett. 96(16), 163702 (2010). [CrossRef]
  4. M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett. 93(11), 111113 (2008). [CrossRef]
  5. H. Rabbani-Haghighi, S. Forget, S. Chenais, A. Siove, M.-C. Castex, and E. Ishow, “Laser operation in nondoped thin films made of a small-molecule organic red-emitter,” Appl. Phys. Lett. 95(3), 033305 (2009). [CrossRef]
  6. N. Tsutsumi, A. Fujihara, and D. Hayashi, “Tunable distributed feedback lasing with a threshold in the nanojoule range in an organic guest-host polymeric waveguide,” Appl. Opt. 45(22), 5748–5751 (2006). [CrossRef] [PubMed]
  7. T. Riedl, T. Rabe, H.-H. Johannes, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, B. Nehls, T. Farrell, and U. Scherf, “Tunable organic thin-film laser pumped by an inorganic violet diode laser,” Appl. Phys. Lett. 88(24), 241116 (2006). [CrossRef]
  8. D. Schneider, T. Rabe, T. Riedl, T. Dobbertin, M. Kroger, E. Becker, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P. Hinze, “Ultrawide tuning range in doped organic solid-state lasers,” Appl. Phys. Lett. 85(11), 1886–1888 (2004). [CrossRef]
  9. S. Riechel, U. Lemmer, J. Feldmann, S. Berleb, A. G. Mückl, W. Brütting, A. Gombert, and V. Wittwer, “Very compact tunable solid-state laser utilizing a thin-film organic semiconductor,” Opt. Lett. 26(9), 593–595 (2001). [CrossRef]
  10. L. Xue, S. R. J. Brueck, and R. Kaspi, “Widely tunable distributed-feedback lasers with chirped gratings,” Appl. Phys. Lett. 94(16), 161102 (2009). [CrossRef]
  11. B. J. Scott, G. Wirnsberger, M. D. McGehee, B. F. Chmelka, and G. D. Stucky, “Dye-Doped Mesostructured Silica as a Distributed Feedback Laser Fabricated by Soft Lithography,” Adv. Mater. 13(16), 1231–1234 (2001). [CrossRef]
  12. D. Pisignano, L. Persano, E. Mele, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, “Emission properties of printed organic semiconductor lasers,” Opt. Lett. 30(3), 260–262 (2005). [CrossRef] [PubMed]
  13. areP. Del Carro, A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano, “Near-infrared imprinted distributed feedback lasers,” Appl. Phys. Lett. 89(20), 201105 (2006). [CrossRef]
  14. D. Pisignano, L. Persano, P. Visconti, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, “Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography,” Appl. Phys. Lett. 83(13), 2545–2547 (2003). [CrossRef]
  15. M. Stroisch, T. Woggon, U. Lemmer, G. Bastian, G. Violakis, and S. Pissadakis, “Organic semiconductor distributed feedback laser fabricated by direct laser interference ablation,” Opt. Express 15(7), 3968–3973 (2007). [CrossRef] [PubMed]
  16. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009). [CrossRef] [PubMed]
  17. L. Persano, A. Camposeo, P. Del Carro, E. Mele, R. Cingolani, and D. Pisignano, “Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition,” Opt. Express 14(5), 1951–1956 (2006). [CrossRef] [PubMed]
  18. S. García-Revilla, M. Zayac, R. Balda, M. Al-Saleh, D. Levy, and J. Fernández, “1Low threshold random lasing in dye-doped silica nano powders,” Opt. Express 17(15), 13202–13215 (2009). [CrossRef] [PubMed]
  19. D. Donisi, R. Asquini, A. d’Alessandro, and G. Assanto, “Distributed feedback grating in liquid crystal waveguide: a novel approach,” Opt. Express 17(7), 5251–5256 (2009). [CrossRef] [PubMed]
  20. D. Wright, E. Brasselet, J. Zyss, G. Langer, and W. Kern, “Dye-doped organic distributed-feedback lasers with index and surface gratings: the role of pump polarization and molecular orientation,” J. Opt. Soc. Am. B 21(5), 944–950 (2004). [CrossRef]
  21. W. J. Wadsworth, I. T. McKinnie, A. D. Woolhouse, and T. G. Haskell, “Efficient distributed feedback solid state dye laser with a dynamic grating,” Appl. Phys. B 69(2), 163–165 (1999). [CrossRef]
  22. R. Harbers, P. Strasser, D. Caimi, R. F. Mahrt, N. Moll, B. J. Offrein, D. Erni, W. Bachtold, and U. Scherf, “Enhanced feedback in organic photonic-crystal lasers,” Appl. Phys. Lett. 87(15), 151121 (2005). [CrossRef]
  23. I. García-Moreno, A. Costela, M. Pintado-Sierra, V. Martín, and R. Sastre, “Enhanced laser action of Perylene-Red doped polymeric materials,” Opt. Express 17(15), 12777–12784 (2009). [CrossRef] [PubMed]
  24. C. Karnutsch, C. Pflumm, G. Heliotis, J. C. deMello, D. D. C. Bradley, J. Wang, T. Weimann, V. Haug, C. Gartner, and U. Lemmer, “Improved organic semiconductor lasers based on a mixed-order distributed feedback resonator design,” Appl. Phys. Lett. 90(13), 131104 (2007). [CrossRef]
  25. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. 21(7), 799–802 (2009). [CrossRef]
  26. M. Reufer, S. Riechel, J. M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, V. Wittwer, and U. Scherf, “Low-threshold polymeric distributed feedback lasers with metallic contacts,” Appl. Phys. Lett. 84(17), 3262–3264 (2004). [CrossRef]
  27. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, “Single mode optofluidic distributed feedback dye laser,” Opt. Express 14(2), 696–701 (2006). [CrossRef] [PubMed]
  28. N. Tsutsumi and M. Yamamoto, “Threshold reduction of a tunable organic laser using effective energy transfer,” J. Opt. Soc. Am. B 23(5), 842–845 (2006). [CrossRef]
  29. V. Bulovic, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science 279(5350), 553–555 (1998). [CrossRef] [PubMed]
  30. P. P. Yaney, D. A. V. Kliner, P. E. Schrader, and R. L. Farrow, “Distributed-feedback dye laser for picosecond ultraviolet and visible spectroscopy,” Rev. Sci. Instrum. 71(3), 1296–1305 (2000). [CrossRef]
  31. Y. Oki, S. Miyamoto, M. Maeda, and N. J. Vasa, “Multiwavelength distributed-feedback dye laser array and its application to spectroscopy,” Opt. Lett. 27(14), 1220–1222 (2002). [CrossRef]
  32. G. M. Gale, P. Ranson, and M. Denariez-Roberge, “Coherent spectroscopy with a distributed feedback dye laser,” Appl. Phys. B 44(4), 221–233 (1987). [CrossRef]
  33. S. C. Schulz, “Web Based Photonic Crystal Biosensors for Drug Discovery & Diagnostics,” in Vacuum & Coating, P.68, May (2008).
  34. F. C. Krebs, “Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing,” Sol. Energy Mater. Sol. Cells 93(4), 465–475 (2009). [CrossRef]
  35. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, “Label-free assays on the BIND system,” J. Biomol. Screen. 9(6), 481–490 (2004). [CrossRef] [PubMed]
  36. B. T. Cunningham and L. Laing, “Microplate-based, label-free detection of biomolecular interactions: applications in proteomics,” Expert Rev. Proteomics 3(3), 271–281 (2006). [CrossRef] [PubMed]
  37. I. D. Block, L. L. Chan, and B. T. Cunningham, “Large-area submicron replica molding of porous low-k dielectric films and application to photonic crystal biosensor fabrication,” Microelectron. Eng. 84(4), 603–608 (2007). [CrossRef]
  38. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008). [CrossRef] [PubMed]
  39. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007). [CrossRef]
  40. B. Park and M. Y. Han, “Organic light-emitting devices fabricated using a premetered coating process,” Opt. Express 17(24), 21362–21369 (2009). [CrossRef] [PubMed]
  41. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996). [CrossRef]
  42. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272(5258), 85–87 (1996). [CrossRef]
  43. R. Hanumanthu, Scriven, and L. E., Coating with patterned rolls and rods (TAPPI, Norcross, GA, ETATS-UNIS, 1996).
  44. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and V. Wittwer, “A Flexible Conjugated Polymer Laser,” Adv. Mater. 10(12), 920–923 (1998). [CrossRef]
  45. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. C. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One- and Two-Dimensional Distributed Feedback,” Adv. Funct. Mater. 14(1), 91–97 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited