OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13029–13037

High speed optical quantum random number generation

Harald Fürst, Henning Weier, Sebastian Nauerth, Davide G. Marangon, Christian Kurtsiefer, and Harald Weinfurter  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13029-13037 (2010)
http://dx.doi.org/10.1364/OE.18.013029


View Full Text Article

Enhanced HTML    Acrobat PDF (994 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.

© 2010 Optical Society of America

OCIS Codes
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: April 13, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: June 1, 2010
Published: June 2, 2010

Citation
Martin Fürst, Henning Weier, Sebastian Nauerth, Davide G. Marangon, Christian Kurtsiefer, and Harald Weinfurter, "High speed optical quantum random number generation," Opt. Express 18, 13029-13037 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-13029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. “Ais 20: Functionality classes and evaluation methodology for deterministic random number generators, v2.0, bsi,” https://www.bsi.bund.de/cae/servlet/contentblob/478150/publicationFile/30276/ais20pdf.pdf (1999).
  2. “Fips 140-2, security requirements for cryptographic modules, nist,” http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf (2001).
  3. C. Petrie, and J. Connelly, “A noise-based ic random number generator for applications in cryptography,” IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 47, 615–621 (2000). [CrossRef]
  4. W. Killmann, and W. Schindler, “A design for a physical rng with robust entropy estimators,” Lect. Notes Comput. Sci. 5154, 146–163 (2008). [CrossRef]
  5. B. Qi, Y. Che, H.-K. Lo, and L. Qian, “Experimental demonstration of a high speed quantum random number generation scheme based on measuring phase noise of a single mode laser,” arXiv.org 0908.3351 (2009).
  6. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Phys. Rev. Lett. 103, 024102 (2009). [CrossRef] [PubMed]
  7. A. Alkassar, T. Nicolay, and M. Rohe, Obtaining true random binary numbers from a weak radioactive source (Springer-Verlag: Computational Science and its applitcations, 2005).
  8. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt. 41, 2435 (1994). [CrossRef]
  9. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000). [CrossRef]
  10. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, postprocessing free, quantum random number generator,” Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]
  11. M. Stipcevic, and B. M. Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007). [CrossRef] [PubMed]
  12. S. Tisa, and F. Zappa, “One-chip quantum random number generator,” Proc. SPIE 7236, 72360J (2009). [CrossRef]
  13. O. Kwon, Y.-W. Cho, and Y.-H. Kim, “Quantum random number generator using photon-number path entanglement,” Appl. Opt. 48, 1774–1778 (2009). [CrossRef] [PubMed]
  14. P. Wang, G. Long, and Y. Li, “Scheme for a quantum random number generator,” J. Appl. Phys. 100, 056107 (2006). [CrossRef]
  15. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J. Mod. Opt. 47, 595–598 (2000).
  16. “Ais 31: Functionality classes and evaluation methodology for physical random number generators. v1.0,” (2001).
  17. W. Killmann andW. Schindler, “A proposal for: Functionality classes and evaluation methodology for true (physical) random number generators (v3.1).” https://www.bsi.bund.de/cae/servlet/contentblob/ 478134/publication-File/30230/trngk31e pdf.pdf (2001).
  18. S. Prionio, “Random numbers certified by Bell’s theorem,” Nature 464, 1021–1024 (2010). [CrossRef]
  19. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  20. J. Soto, “Statistical testing of random number generators,” Proc. 22nd National Information Systems Security Conference (1999).
  21. R. G. Brown, “Dieharder test suite,” http://www.phy.duke.edu/ rgb/General/dieharder.php (2009).
  22. J. Kim, and Y. Yamamoto, “Theory of noise in p-n junction light emitters,” Phys. Rev. B 55, 9949 (1997). [CrossRef]
  23. P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. 4, 293–299 (1987). [CrossRef]
  24. R. Loudon, The quantum theory of light (Oxford University Press, 2000), third edition ed.
  25. R. Short, and L. Mandel, “Observation of sub-poissonian photon statistics,” Phys. Rev. Lett. 51, 384 (1983). [CrossRef]
  26. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennet, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94, 231113 (2009). [CrossRef]
  27. K. Omote, “Dead time effects in photon-counting distributions,” Nucl. Instrum. Methods 293, 582–588 (1990). [CrossRef]
  28. J. W. Mueller, “Some formulae for a dead-time-distorted poisson process,” Nucl. Instrum. Methods 117, 401–404 (1974). [CrossRef]
  29. D. E. Knuth, The Art of Computer Programming II (Addison-Wesley, 1998).
  30. N. H. Kuiper, ““Tests concerning random points on a circle,” Proc. Kon. Ned. Aka Wet,” A 63, 38–47 (1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited