OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13063–13071

Design of highly transparent glasses with broadband antireflective subwavelength structures

Young Min Song, Hee Ju Choi, Jae Su Yu, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13063-13071 (2010)
http://dx.doi.org/10.1364/OE.18.013063


View Full Text Article

Enhanced HTML    Acrobat PDF (5421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a design optimization of highly transparent glasses with broadband antireflective subwavelength structures (SWS) based on the theoretical calculation using a rigorous coupled wave analysis method. It is found that optical transmission characteristics of SWS integrated glasses are governed mainly by the zero-order condition considering multiple internal reflections but not external reflection. By utilizing parabola-shaped SWS on both sides of the glasses with a period of 200 nm and a height of 200 nm, an average transmittance of 99.58% is achieved over a whole range of visible wavelength. Transmission band shrinkage effects of the SWS integrated glass are also observed with increasing the incident angle of light.

© 2010 OSA

OCIS Codes
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

History
Original Manuscript: May 4, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: May 28, 2010
Published: June 2, 2010

Citation
Young Min Song, Hee Ju Choi, Jae Su Yu, and Yong Tak Lee, "Design of highly transparent glasses with broadband antireflective subwavelength structures," Opt. Express 18, 13063-13071 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-13063


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999). [CrossRef] [PubMed]
  2. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997). [CrossRef]
  3. Y. Kanamori, M. Ishimori, and K. Hane, “High efficient light-emitting diodes with antireflection subwavelength gratings,” IEEE Photon. Technol. Lett. 14(8), 1064–1066 (2002). [CrossRef]
  4. M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002). [CrossRef]
  5. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003). [CrossRef]
  6. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [CrossRef]
  7. Y. Li, J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, “Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings,” J. Mater. Chem. 19(13), 1806–1810 (2009). [CrossRef]
  8. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009). [CrossRef] [PubMed]
  9. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolums,” Adv. Mater. 21(16), 1618–1621 (2009). [CrossRef]
  10. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007). [CrossRef]
  11. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010). [CrossRef] [PubMed]
  12. A. Gombert, W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, “Subwavelength-structured antireflective surfaces on glass,” Thin Solid Films 351(1-2), 73–78 (1999). [CrossRef]
  13. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 2, No. 7B), L735–L737 (2000). [CrossRef]
  14. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO(2) films,” Opt. Lett. 26(21), 1642–1644 (2001). [CrossRef]
  15. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008). [CrossRef]
  16. Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng. 87(2), 125–128 (2010). [CrossRef]
  17. M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001). [CrossRef] [PubMed]
  18. Z. Wu, J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, “Deformable antireflection coatings from polymer and nanoparticle multilayers,” Adv. Mater. 18(20), 2699–2702 (2006). [CrossRef]
  19. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [CrossRef] [PubMed]
  20. E. Hecht, Optic 4th ed.(Addison Wesley, 2002), Chap. 10.
  21. H. Y. Koo, D. K. Yi, S. J. Yoo, and D.-Y. Kim, “A snowman-like array of colloidal dimmers for antireflecting surfaces,” Adv. Mater. 16(3), 274–277 (2004). [CrossRef]
  22. M. A. Ray, N. Shewmon, S. Bhawalkar, L. Jia, Y. Yang, and E. S. Daniels, “Submicrometer surface patterning using interfacial colloidal particle self-assembly,” Langmuir 25(13), 7265–7270 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited