OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13072–13082

In-series double cladding fibers for simultaneous refractive index and temperature measurement

Huanhuan Liu, Fufei Pang, Hairui Guo, Wenxin Cao, Yunqi Liu, Na Chen, Zhenyi Chen, and Tingyun Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13072-13082 (2010)
http://dx.doi.org/10.1364/OE.18.013072


View Full Text Article

Enhanced HTML    Acrobat PDF (2081 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fiber-optic sensor for simultaneous measurement of refractive index (RI) and temperature was proposed and demonstrated. It was fabricated by cascading two sections of specialty double cladding (DC) fibers which presented a pair of well-separated resonant spectra dips. The sensing properties of temperature and ambient RI were investigated theoretically based on the coupled mode theory. Experimental results indicated that these two resonant spectra shifts were linearly dependent on the variation of the RI in the range of 1.3333~1.4118 and on the temperature in the range of −10°C~ + 80°C. Such a fiber-optic sensor is simple and easy for mass production and has potential applications for biosensors or chemical sensors.

© 2010 OSA

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Sensors

History
Original Manuscript: March 10, 2010
Revised Manuscript: May 16, 2010
Manuscript Accepted: May 25, 2010
Published: June 3, 2010

Citation
Huanhuan Liu, Fufei Pang, Hairui Guo, Wenxin Cao, Yunqi Liu, Na Chen, Zhenyi Chen, and Tingyun Wang, "In-series double cladding fibers for simultaneous refractive index and temperature measurement," Opt. Express 18, 13072-13082 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-13072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 76(12), 3269–3284 (2004). [CrossRef] [PubMed]
  2. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000). [CrossRef] [PubMed]
  3. D. W Kim,, Y Zhang, K. L Cooper, and A Wang, “Fiber-opitc interferometric immno-sensor using long period grating,” Electron. Lett . 42, 324-325 (2006). [CrossRef]
  4. P. Pilla, A. Iadicicco, L. Contessa, S Campopiano, A Cutolo, M Giordano, G Guerra, and A Vusano, “Optical Chemo-Sensor Based on Long Period Gratings Coated With delta Form Syndiotactic Polystyrene,” IEEE Photon. Technol. Lett. 17, 1713–1715 (2005). [CrossRef]
  5. Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period Grating Relative Humidity Sensor with Hydrogel Coating,” IEEE Photon. Technol. Lett. 19(12), 880–882 (2007). [CrossRef]
  6. S. K. Abi Kaed Bey, C. C. Lam, T. Sun, and K. T. V. Grattan, “Chloride ion optical sensing using a long period grating pair,” Sens. Actuators. A. 141(2), 390–395 (2008). [CrossRef]
  7. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform Thininned Fiber Bragg Gratings for Simultaneous Refractive Index and Temperature Measurements,” IEEE Photon. Technol. Lett. 17(7), 1495–1497 (2005). [CrossRef]
  8. P. Lu, L. Men, and Q. Chen, “Polymer-Coated Fiber Bragg Grating Sensors for Simultaneous Monitoring of Soluble Analytes and Temperature,” IEEE Sens. J. 9(4), 340–345 (2009). [CrossRef]
  9. C. L. Zhao, X. F. Yang, M. S. Demokan, and W. Jin, “Simultaneous Temperature and Refractive Index Measurements Using a 3° Slanted Multimode Fiber Bragg Grating,” J. Lightwave Technol. 24(2), 879–883 (2006). [CrossRef]
  10. C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Use of tilted bragg gratings to simultaneously measure sugar concentration and temperature during the production process of suger, ” in Proc. OFS 2005, 5855, 451-454 (2005).
  11. B. A. L. Gwandu, X. Shu, T. D. P. Allsop, W. Zhang, and I. Bennion, “Simultaneous refractive index and temperature measurement using cascaded long-period grating in double-cladding fibre,” Electron. Lett. 38(14), 695–696 (2002). [CrossRef]
  12. J. Yan, A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007). [CrossRef]
  13. T. Allsop, R. Neal, D. Giannone, D. J. Webb, D. J. Mapps, and I. Bennion, “Sensing characteristics of a novel two-section long-period grating,” Appl. Opt. 42(19), 3766–3771 (2003). [CrossRef] [PubMed]
  14. X. W. Shu, B. A. L. Gwandu, Y. Lin, L. Zhang, and I Bennion, “Sampled fibre Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26, 774–776 (2001). [CrossRef]
  15. X. F. Chen, K. M. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt. 44(2), 178–182 (2005). [CrossRef] [PubMed]
  16. D. W. Kim, F. Shen, X. P. Chen, and A. Wang, “Simultaneous measurement of refractive index and temperature based on a reflection-mode long-period grating and an intrinsic Fabry-Perot interferometer sensor,” Opt. Lett. 30(22), 3000–3002 (2005). [CrossRef] [PubMed]
  17. A. P. Zhang, L. Y. Shao, J. F. Ding, and S. He, “Sandwiched Long-period Gratings for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photon. Technol. Lett. 17(11), 2397–2399 (2005). [CrossRef]
  18. F. Pang, H. H. Liu, N. Chen, Y. Q. Liu, X. L. Zeng, Z. Y. Chen, and T. Y. Wang, “Fiber-optic refractive index sensor based on cladding-mode resonance,” in Proc. OFS 2009, 7503, 75036W-4 (2009).
  19. F. Pang, W. Xiang, H. Guo, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Special optical fiber for temperature sensing based on cladding-mode resonance,” Opt. Express 16(17), 12967–12972 (2008). [CrossRef] [PubMed]
  20. P. L. Frangois and C. Vassallo, “Finite cladding effects in W fibers: a new interpretation of leaky modes,” Appl. Opt. 22(19), 3109–3120 (1983). [CrossRef]
  21. A. C. Boucouvalas, “Coaxial Optical Fiber Coupling,” J. Lightwave Technol. 3(5), 1151–1158 (1985). [CrossRef]
  22. X. Shu, T. Allsop, B. Gwadu, L. Zhang, and I. Bennion, “High-Temperature Sensitivity of Long-Period Gratings in B-Ge Codoped Fiber,” IEEE Photon. Technol. Lett. 13(8), 818–820 (2001). [CrossRef]
  23. F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, “Temperature-Insensitivity Bending Sensor Based on Cladding-Mode Resonance of Special Optical Fiber,” IEEE Photon. Technol. Lett. 21(2), 76–78 (2009). [CrossRef]
  24. Z. Tian and S. S.-H. Yam, “In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009). [CrossRef]
  25. K. Kawano, and T. Kitoh, Introduction to Optical Waveguide Analysis: Solving Maxwell's Equations and the Schrodinger Equation, (John Wiley & Sons, Inc., 2001), ISBNs: 0–471–40634–1 (Hardback); 0–471–22160–0.
  26. O. Frazão, T. Martynkien, J. M. Baptista, J. L. Santos, W. Urbanczyk, and J. Wojcik, “Optical refractometer based on a birefringent Bragg grating written in an H-shaped fiber,” Opt. Lett. 34(1), 76–78 (2009). [CrossRef]
  27. W. Jin, W. C. Michie, G. Thursby, M. Konstantaki, and B. Culshaw, “Simultaneous measurement of strain and temperature: Error analysis,” Opt. Eng. 36(2), 598–609 (1997). [CrossRef]
  28. A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber bragg grating sensors,” IEEE Photon. Technol. Lett. 18(1), 178–180 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited