OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13083–13093

Self-collimating photonic crystal antireflection structure for both TE and TM polarizations

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee  »View Author Affiliations

Optics Express, Vol. 18, Issue 12, pp. 13083-13093 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-efficiency antireflection structure for both TE and TM polarizations in two-dimensional self-collimating square lattice photonic crystal consisting of air holes in silicon. The design parameters of the optimal antireflection structure can be obtained by using the concept of Fresnel coefficients and the finite-difference time-domain simulations. The photonic crystal operating in almost identical self-collimation frequencies for two polarizations exhibits a large reflection coefficient for TE and a very small one for TM polarization. In this case, the antireflection structure for TE can also improve the transmission for TM polarization. To confirm a highly efficient antireflection structure designed, we investigate the transmission data of three finite photonic crystal samples consisting of 36, 38 and 40 unit cells for the cases without and with the antireflection structures through finite-difference time-domain simulations.

© 2010 Optical Society of America

OCIS Codes
(250.5300) Optoelectronics : Photonic integrated circuits
(310.1210) Thin films : Antireflection coatings
(230.5298) Optical devices : Photonic crystals

ToC Category:
Thin Films

Original Manuscript: April 7, 2010
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 27, 2010
Published: June 3, 2010

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee, "Self-collimating photonic crystal antireflection structure for both TE and TM polarizations," Opt. Express 18, 13083-13093 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  2. J. Witzens, M. Loncar, and A. Scherer, "Self-collimation in Planar Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002). [CrossRef]
  3. X. Yu and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003). [CrossRef]
  4. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, "Dispersion-based beam splitter in photonic crystals," Opt. Lett. 29, 617-619 (2004). [CrossRef] [PubMed]
  5. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Line-defect-induced bending and splitting of selfcollimated beams in two-dimensional photonic crystals," Appl. Phys. Lett. 87, 181106 (2005). [CrossRef]
  6. M.-W. Kim, S.-G. Lee, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Experimental demonstration of bending and splitting of self-collimated beams in two-dimensional photonic crystals," Appl. Phys. Lett. 90, 113121 (2007). [CrossRef]
  7. J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, "Efficient beaming of self-collimated light from photonic crystals," Opt. Express 16, 20354-20367 (2008). [CrossRef] [PubMed]
  8. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdr’e, M. V. Kotlyar, L. O’Faolin, and T. F. Krauss, "Selfcollimating photonic crystal polarization beam splitter," Opt. Lett. 32, 530-532 (2007). [CrossRef] [PubMed]
  9. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, "Photonic crystal Mach-Zehnder interferometer based on self-collimation," Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  10. T.-T. Kim, S.-G. Lee, H. Y. Park, J.-E. Kim, and C.-S. Kee, "Asymmetric Mach-Zehnder filter based on selfcollimation phenomenon in two-dimensional photonic crystals," Opt. Express 18, 5384-5389 (2010). [CrossRef] [PubMed]
  11. Y. Zhang, Y. Zhang, and B. Li, "Optical switches and logic gates based on self-collimated beams in twodimensional photonic crystals," Opt. Express 15, 9287-9292 (2007). [CrossRef] [PubMed]
  12. X. Chen, Z. Qiang, D. Zhao, H. Li, Y. Qiu, W. Yang, and W. Zhou, "Polarization-independent drop filters based on photonic crystal self-collimation ring resonators," Opt. Express 17, 19808-19813 (2009). [CrossRef] [PubMed]
  13. T. Baba and D. Ohsaki, "Interfaces of Photonic Crystals for High Efficiency Light Transmission," Jpn. J. Appl. Phys. 40, 5920-5924 (2001). [CrossRef]
  14. J. Ushida, M. Tokushima, M. Shirane, and H. Yamada, "Systematic design of antireflection coating for semiinfinite one-dimensional photonic crystals using Bloch wave expansion," Appl. Phys. Lett. 82, 7-9 (2003). [CrossRef]
  15. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Sherer, "Mode matching interface for efficient coupling of light into planar photonic crystals," Phys. Rev. E 69, 046609 (2004). [CrossRef]
  16. B. Momeni and A. Adibi, "Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystal," Appl. Phys. Lett. 87, 171104 (2005). [CrossRef]
  17. Z. Li, E. Ozbay, H. Chen, J. Chen, F. Yang, and H. Zheng, "Resonant cavity based compact efficient antireflection structures for photonic crystals," J. Phys. D: Appl. Phys. 40, 5873-5877 (2007). [CrossRef]
  18. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, "Antireflection coatings for twodimensional photonic crystals using a rigorous impedance definition," Appl. Phys. Lett. 93, 121114 (2008). [CrossRef]
  19. S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, "Reflection minimization at two-dimensional photonic crystal interfaces," Opt. Express 16, 4270-4277 (2008). [CrossRef] [PubMed]
  20. S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, "Optimization of Photonic Crystal Interfaces for High Efficient Coupling of Terahertz Waves," in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1-2.
  21. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, "Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures," Appl. Phys. Lett. 95, 011119 (2009). [CrossRef]
  22. J.-M. Park, S.-G. Lee, H. Y. Park, J.-E. Kim, and M.-H. Lee, "High-efficiency antireflection structures for terahertz self-collimating photonic crystals," J. Opt. Soc. Am. B 26, 1967-1974 (2009). [CrossRef]
  23. K. S. Yee, "Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302 (1966).
  24. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185 (1994). [CrossRef]
  25. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a Photonic Gap in Periodic Dielectric Structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  26. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  27. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 63-74.
  28. H. A. Macleod, Thin Film Optical Filters, 3rd ed. (Institute of Physics, Bristol, 2001), Chaps. 2 and 3. [CrossRef]
  29. S. Adachi, "Model dielectric constants of Si and Ge," Phys. Rev. B 38, 12966-12976 (1988). [CrossRef]
  30. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-Dimensional Invisibility Cloak at Optical Wavelengths," Science 328, 337-339 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited