OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13204–13211

Practical tests for distinguishing slow light from saturable absorption

Adrian C. Selden  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13204-13211 (2010)
http://dx.doi.org/10.1364/OE.18.013204


View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A series of practical tests of slow light (light with reduced group velocity) in saturable absorbers is proposed. These include experimental tests for saturable absorption, which can mimic slow light effects in saturable media, the dependence of slow light on the mutual coherence of pump and probe, since both slow and fast light effects can be simulated with incoherent sources, and the influence of polarization. The principal requirements for practical observation of spectral hole burning are reviewed and shown to be achievable for a wide range of saturable media with the narrow line sources now available.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Slow and Fast Light

History
Original Manuscript: February 17, 2010
Revised Manuscript: May 17, 2010
Manuscript Accepted: May 26, 2010
Published: June 4, 2010

Citation
Adrian C. Selden, "Practical tests for distinguishing slow light from saturable absorption," Opt. Express 18, 13204-13211 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-13204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. S. Zapasskiĭ and G. G. Kozlov, “A saturable absorber, coherent population oscillations and slow light,” Opt. Spectrosc. 100(3), 419–424 (2006). [CrossRef]
  2. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005). [CrossRef] [PubMed]
  3. S. E. Schwarz and T. Y. Tan, “Wave interactions in saturable absorbers,” Appl. Phys. Lett. 10(1), 4–7 (1967). [CrossRef]
  4. L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud., “Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line,” Opt. Commun. 45(6), 416–419 (1983). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003). [CrossRef] [PubMed]
  7. P. Wu and D. V. G. L. N. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95(25), 253601 (2005). [CrossRef] [PubMed]
  8. S. Melle, O. G. Calderón, F. Carreño, E. Cabrera, M. A. Antón, and S. Jarabo, “Effect of ion concentration on slow light propagation in highly doped erbium fibers,” Opt. Commun. 279(1), 53–63 (2007). [CrossRef]
  9. B. Macke and B. Segard, “Slw light in saturable absorbers,” Phys. Rev. A 78(1), 013817 (2008). [CrossRef]
  10. A. C. Selden, “Slow light and saturable absorption,” Opt. Spectrosc. 106(6), 881–888 (2009). [CrossRef]
  11. P.-C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29(19), 2291–2293 (2004). [CrossRef] [PubMed]
  12. S. Stepanov and E. Hernández Hernández, “Controllable propagation of light pulses in Er-doped fibers with saturable absorption,” Opt. Lett. 33(19), 2242–2244 (2008). [CrossRef] [PubMed]
  13. A. C. Selden, “Nonlinear transmission of an optical signal,” Electron. Lett. 7(11), 287–288 (1971). [CrossRef]
  14. A. C. Selden, “Pulse transmission through a saturable absorber,” Br. J. Appl. Phys. 18(6), 743–748 (1967). [CrossRef]
  15. J. Rutman, “Characterization of Phase and Frequency Instabilities in Precision Frequency Source: Fifteen Years of Progress',” Proc. IEEE 66(9), 1048–1075 (1978). [CrossRef]
  16. F. Rohart, H. Dève, and B. Macke, “Saturated absorption line-width: influence of the source frequency noise,” Appl. Phys. B 39, 19–27 (1986). [CrossRef]
  17. G. Piredda and R. W. Boyd, “Slow light by means of coherent population oscillations: laser line-width effects,” J. Eur. Opt. Soc. 2, 07004 (2007). [CrossRef]
  18. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187(4736), 493–494 (1960). [CrossRef]
  19. V. Zapasskiĭ and G. Kozlov, “Incoherent “slow and fast light”,” Opt. Express 17(24), 22154–22162 (2009). [CrossRef] [PubMed]
  20. H. Shin, A. Schweinsberg, and R. W. Boyd, “Reducing pulse distortion in fast-light pulse propagation through an erbium-doped fiber amplifier using a mutually incoherent background field,” Opt. Commun. 282(10), 2085–2087 (2009). [CrossRef]
  21. H. Wang, Y. Zhang, N. Wang, W. Yan, H. Tian, W. Qiu, and P. Yuan, “Observation of superluminal propagation at negative group velocity in C60 solution,” Appl. Phys. Lett. 90(12), 121107 (2007). [CrossRef]
  22. S.-W. Chiow, S. Herrmann, H. Müller, and S. Chu, “6W, 1 kHz linewidth, tunable continuous-wave near-infrared laser,” Opt. Express 17(7), 5246–5250 (2009). [CrossRef] [PubMed]
  23. W. Xue, Y. Chen, F. Öhman, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33, 1404–1406 (2009).
  24. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005). [CrossRef] [PubMed]
  25. M. S. Malcuit, R. W. Boyd, L. W. Hillman, J. Krasinski, and C. R. Stroud., “Saturation and inverse-saturation absorption line shapes in alexandrite,” J. Opt. Soc. Am. B 1(1), 73–75 (1984). [CrossRef]
  26. Z.-B. Liu, J.-G. Tian, W.-P. Zang, W.-Y. Zhou, C.-P. Zhang, J.-Y. Zheng, Y.-C. Zhou, and H. Xu, “Large optical nonlinearities of new organophosphorus fullerene derivatives,” Appl. Opt. 42(35), 7072–7076 (2003). [CrossRef] [PubMed]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101(9), 093902 (2008). [CrossRef] [PubMed]
  28. Y. N. Zhao, J. Zhang, A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. Wang, “A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability,” Opt. Express 17(11), 8970–8982 (2009). [CrossRef] [PubMed]
  29. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008). [CrossRef]
  30. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009). [CrossRef] [PubMed]
  31. S.-W. Chiow, Q. Long, C. Vo, H. Müller, and S. Chu, “Extended-cavity diode lasers with tracked resonances,” Appl. Opt. 46(33), 7997–8001 (2007). [CrossRef] [PubMed]
  32. B. H. Soffer and B. B. McFarland, “Frequency locking and dye spectral hole burning in Q-spoiled lasers,” Appl. Phys. Lett. 8(7), 166–169 (1966). [CrossRef]
  33. R. Shakhmuratov, A. Rebane, P. Mégret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A 71(5), 053811 (2005). [CrossRef]
  34. A. C. Selden, “Analysis of the saturable absorber transmission equation,” J. Phys. D Appl. Phys. 3(12), 1935–1943 (1970). [CrossRef]
  35. C. S. Yelleswarapu, S. Laoui, R. Philip, and D. V. G. L. N. Rao, “Coherent population oscillations and superluminal light in a protein complex,” Opt. Express 16(6), 3844–3852 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited