OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 12 — Jun. 7, 2010
  • pp: 13258–13270

Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating

Yin-Jung Chang  »View Author Affiliations


Optics Express, Vol. 18, Issue 12, pp. 13258-13270 (2010)
http://dx.doi.org/10.1364/OE.18.013258


View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A metal/multi-insulator/metal waveguide plasmonic Bragg grating with a large dynamic range of index modulation is investigated analytically and numerically. Theoretical formalism of the dispersion relation for the present and general one-dimensional gratings is developed for TM waves in the vicinity of each stop band. Wide-band and narrow-band designs with their respective FWHM bandwidths of 173.4 nm and < 3.4 nm in the 1550 nm band using a grating length of < 16.0 µm are numerically demonstrated. Time-average power vortexes near the silica-silicon interfaces are revealed in the stop band and are attributed to the contra-flow interaction and simultaneous satisfactions of the Bragg condition for the incident and backward-diffracted waves. An enhanced forward-propagating power is thus shown to occur over certain sections within one period due to the power coupling from the backward-diffracted waves.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

History
Original Manuscript: April 8, 2010
Revised Manuscript: May 25, 2010
Manuscript Accepted: June 1, 2010
Published: June 4, 2010

Citation
Yin-Jung Chang, "Design and analysis of metal/multi-insulator/metal waveguide plasmonic Bragg grating," Opt. Express 18, 13258-13270 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-12-13258


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef] [PubMed]
  3. S. A. Maier, “Plasmonics: the promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1671–1677 (2006). [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  5. B. Wang, and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87(013), 107 (2005).
  6. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005). [CrossRef] [PubMed]
  7. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24(2), 912–918 (2006). [CrossRef]
  8. J.-W. Mu, and W.-P. Huang, “A low-loss surface plasmonic Bragg grating,” J. Lightwave Technol. 27(4), 436–439 (2009). [CrossRef]
  9. A. Hosseini, and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14(23), 318–323 (2006). [CrossRef]
  10. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  11. J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008). [CrossRef] [PubMed]
  12. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16(1), 413–425 (2008). [CrossRef] [PubMed]
  13. Z. Fu, Q. Gan, K. Gao, Z. Pan, and F. J. Bartoli, “Numerical investigation of a bidirectional wave coupler based on plasmonic Bragg gratings in the near infrared domain,” J. Lightwave Technol. 26(22), 3699–3703 (2008). [CrossRef]
  14. Y.-J. Chang, and G.-Y. Lo, “A narrow band metal–multi-insulator–metal waveguide plasmonic Bragg grating,” IEEE Photon. Technol. Lett. 22, 634–636 (2010). [CrossRef]
  15. C. Yeh, K. F. Casey, and Z. A. Kaprielian, “Transverse magnetic wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microw. Theory Tech. 13(3), 297–302 (1965). [CrossRef]
  16. P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  17. Y.-J. Chang, T. K. Gaylord, and G.-K. Chang, “Attenuation in waveguides on FR-4 boards due to periodic substrate undulations,” Appl. Opt. 46(12), 2234–2243 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited