OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13321–13330

Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser

Michael C. Gross, Patrick T. Callahan, Thomas R. Clark, Dalma Novak, Rodney B. Waterhouse, and Michael L. Dennis  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13321-13330 (2010)
http://dx.doi.org/10.1364/OE.18.013321


View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the generation of microwave and millimeter-wave frequencies from 26 to 100 GHz by heterodyning the output modes of a dual-wavelength fiber laser based on stimulated Brillouin scattering. The output frequency is tunable in steps of 10.3 MHz, equal to the free spectral range of the resonator. The noise properties of the beat frequency indicate a microwave linewidth of < 2 Hz. We discuss potential for operation into the terahertz regime.

© 2010 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(350.4010) Other areas of optics : Microwaves
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 8, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: June 2, 2010
Published: June 7, 2010

Citation
Michael C. Gross, Patrick T. Callahan, Thomas R. Clark, Dalma Novak, Rodney B. Waterhouse, and Michael L. Dennis, "Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser," Opt. Express 18, 13321-13330 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13321


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Lim, A. Nirmalathas, M. Bakaul, K.-L. Lee, D. Novak, and R. Waterhouse, “Mitigation strategy for transmission impairments in millimeter-wave radio-over-fiber networks,” J. Opt. Netw. 8(2), 201–214 (2009). [CrossRef]
  2. N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, M. Csörnyei, A. Stöhr, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8(2), 156–178 (2009). [CrossRef]
  3. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006). [CrossRef]
  4. J.-F. Cliche, B. Shillue, C. Latrasse, M. Têtu, and L. D’Addario, “A high coherence, high stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array,” Proc. SPIE 5489, 1115–1126 (2004). [CrossRef]
  5. K. J. Williams, L. Goldberg, R. D. Esman, M. Dagenais, and J. F. Weller, “6–34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers,” Electron. Lett. 25(18), 1242–1243 (1989). [CrossRef]
  6. G. J. Simonis and D. G. Purchase, “Optical generation, distribution, and control of microwaves using laser heterodyne,” IEEE Trans. Microw. Theory Tech. 38(5), 667–669 (1990). [CrossRef]
  7. J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium, pp.349–352, 3–8 June 2007.
  8. W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarization distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997). [CrossRef]
  9. S. Pajarola, G. Guekos, P. Nizzola, and H. Kawaguchi, “Dual-polarization external-cavity diode laser transmitter for fiber-optic antenna remote feeding,” IEEE Trans. Microw. Theory Tech. 47(7), 1234–1240 (1999). [CrossRef]
  10. T. R. Clark, M. G. Airola, and R. M. Sova, “Demonstration of dual-polarization fiber ring laser for microwave generation,” in IEEE International Meeting on Microwave Photonics,2004 (IEEE, 2004), pp. 127–130.
  11. G. Pillet, L. Morvan, M. Brunel, F. Bretenaker, D. Dolfi, M. Vallet, J.-P. Huignard, and A. Le Floch, “Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals,” J. Lightwave Technol. 26(15), 2764–2773 (2008). [CrossRef]
  12. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, and P. Shum, “Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser,” Appl. Phys. B 91(1), 99–103 (2008). [CrossRef]
  13. S. L. Pan and J. P. Yao, “A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17(7), 5414–5419 (2009). [CrossRef] [PubMed]
  14. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, “Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth,” IEEE Photon. Technol. Lett. 18(17), 1813–1815 (2006). [CrossRef]
  15. M. L. Dennis, R. M. Sova, and T. R. Clark, “Dual-wavelength Brillouin fiber laser for microwave frequency generation,” Optical Fiber Communications Conference 2007 (Anaheim, CA, March 25–29, 2007), paper OWJ6.
  16. M.L. Dennis, R.M. Sova and T.R. Clark, “Microwave frequency generation up to 27.5 GHz using a dual-wavelength Brillouin fiber laser,” 2007 Dig. IEEE LEOS Summer Topical Mtg., 195–195 (2007).
  17. J. H. Geng, S. Staines, and S. B. Jiang, “Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency,” Opt. Lett. 33(1), 16–18 (2008). [CrossRef]
  18. M. L. Dennis, M. C. Gross, T. R. Clark, D. Novak, and R. B. Waterhouse, “Broadband data transmission in a 40 GHz fiber radio link using a dual-wavelength SBS fiber laser,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OWF4 (2009).
  19. M. C. Gross, T. R. Clark, and M. L. Dennis, “Narrow-linewidth microwave frequency generation by dual-wavelength Brillouin fiber laser,” Technical Digest of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society., 151–152 (2008).
  20. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7(10), 509–511 (1982). [CrossRef] [PubMed]
  21. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997). [CrossRef]
  22. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “CW Brillouin fiber laser,” Appl. Phys. Lett. 28(10), 608–609 (1976). [CrossRef]
  23. Q. Yu, X. Bao, and L. Chen, “Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers,” Opt. Lett. 29(1), 17–19 (2004). [CrossRef] [PubMed]
  24. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001). [CrossRef]
  25. http://www.u2t.de/fileadmin/redakteure/Products/Datasheets/Pre-DS_XPDV4120R.pdf
  26. A. Beling and J. C. Campbell, “InP-based high-speed photodetectors,” J. Lightwave Technol. 27(3), 343–355 (2009). [CrossRef]
  27. F. F. De Lucia, “Spectroscopy in the Terahertz Spectral Region,” in Sensing with Terahertz Radiation, D. Mittleman, ed. (Springer-Verlag, Berlin, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited