OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13345–13360

Analysis of throughput for multilayer infrared meanderline waveplates

Samuel L. Wadsworth and Glenn D. Boreman  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13345-13360 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A meanderline wave retarder is a unique type of frequency-selective-surface (FSS) that enables a change in the state of optical polarization. The principles of operation are very similar to a typical crystalline waveplate, such that the artificially structured meanderline array has both ‘slow’ and ‘fast’ axes that provide a phase offset between two orthogonal wave components. In this paper, we study the behavior and response of multilayered meanderline quarter-wave retarders designed for operation at 10.6 μm wavelength (28.28 THz). It will be shown that meanderline quarter-wave plates with more than a single layer exhibit improved transmission throughput at infrared frequencies due to impedance matching, similar to a multilayer optical film coating. Numerical data, both from simulations and measurements, are presented to validate this claim.

© 2010 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence
(160.3918) Materials : Metamaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: April 16, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: May 12, 2010
Published: June 7, 2010

Samuel L. Wadsworth and Glenn D. Boreman, "Analysis of throughput for multilayer infrared meanderline waveplates," Opt. Express 18, 13345-13360 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Tharp, J. M. Lopez-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006). [CrossRef] [PubMed]
  2. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and Demonstration of an Infrared Meanderline Phase Retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007). [CrossRef]
  3. J. S. Tharp, J. Alda, and G. D. Boreman, “Off-axis behavior of an infrared meander-line waveplate,” Opt. Lett. 32(19), 2852–2854 (2007). [CrossRef] [PubMed]
  4. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999). [CrossRef] [PubMed]
  5. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36(7), 1566–1572 (1997). [CrossRef] [PubMed]
  6. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35(31), 6195–6202 (1996). [CrossRef] [PubMed]
  7. R. B. Boye, S. A. Kemme, J. R. Wendt, A. A. Cruz-Cabrera, G. A. Vawter, C. R. Alford, T. R. Carter, and S. Samora, “Fabrication and measurement of wideband achromatic waveplates for the mid-infrared region using subwavelength features,” J. Microlith., Microfab, Microsyst. 5(4), 043007 (2006). [CrossRef]
  8. P. C. Deguzman and G. P. Nordin, “Stacked subwavelength gratings as circular polarization filters,” Appl. Opt. 40(31), 5731–5737 (2001). [CrossRef]
  9. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18(2), 1695–1703 (2010). [CrossRef] [PubMed]
  10. S. A. Kemme, A. A. Cruz-Cabrera, R. R. Boye, T. Carter, S. Samora, C. Alford, J. R. Wendt, G. A. Vawter, and J. L. Smith, “Micropolarizing device for long wavelength infrared polarization imaging,” Sandia National Lab., Albuquerque, NM, Sandia Report SAND2006–6889, (2006).
  11. A. Lompado, E. A. Sornsin, and R. A. Chipman, “HN22 sheet polarizer, an inexpensive infrared retarder,” Appl. Opt. 36(22), 5396–5402 (1997). [CrossRef] [PubMed]
  12. R. M. A. Azzam and C. L. Spinu, “Achromatic angle-insensitive infrared quarter-wave retarder based on total internal reflection at the Si-SiO2 interface,” J. Opt. Soc. Am. A 21(10), 2019–2022 (2004). [CrossRef]
  13. M. Iwanaga, “Ultracompact waveplates: approach from metamaterials,” Appl. Phys. Lett. 92(15), 153102 (2008). [CrossRef]
  14. E. Cojocaru, T. Julea, and F. Nichitiu, “Infrared thin-film totally reflecting quarter-wave retarders,” Appl. Opt. 30(28), 4124–4125 (1991). [CrossRef] [PubMed]
  15. E. H. Korte, B. Jordanov, D. Kolev, and D. Tsankov, “Total reflection prisms as achromatic IR retarders,” Appl. Spectrosc. 42(8), 1394–1400 (1988). [CrossRef]
  16. J. Liu and R. M. A. Azzam, “Infrared quarter-wave reflection retarders designed with high-spatial-frequency dielectric surface-relief gratings on a gold substrate at oblique incidence,” Appl. Opt. 35(28), 5557–5562 (1996). [CrossRef] [PubMed]
  17. V. N. Okorkov, V. Y. Panchenko, B. V. Russkikh, V. N. Seminogov, V. I. Sokolov, and V. P. Yakunin, “Phase retarder for transformation of polarization of high-power infrared laser beams based on resonant excitation of surface electromagnetic waves on metallic diffraction gratings,” Opt. Eng. 33(10), 3145–3155 (1994). [CrossRef]
  18. E. L. Gieszelmann, S. F. Jacobs, and H. E. Morrow, “Simple quartz birefringent quarter-wave plate for use at 3.39 μm,” J. Opt. Soc. Am. A 59(10), 1381–1383 (1969). [CrossRef]
  19. R. C. Sharp, D. P. Resler, D. S. Hobbs, and T. A. Dorschner, “Electrically tunable liquid-crystal wave plate in the infrared,” Opt. Lett. 15(1), 87–89 (1990). [CrossRef] [PubMed]
  20. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  21. P. D. Hale and G. W. Day, “Stability of birefringent linear retarders (waveplates),” Appl. Opt. 27(24), 5146–5153 (1988). [CrossRef] [PubMed]
  22. H. Kikuta, K. Numata, M. Muto, K. Iwata, H. Toyota, K. Moriwaki, T. Yotuya, and H. Sato, “Polarization imaging camera with form birefringent micro-retarder array,” in Frontiers in Optics, OSA Technical Digest (CD), (2003).
  23. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999). [CrossRef]
  24. C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003). [CrossRef]
  25. M. W. Kudenov, E. L. Dereniak, L. Pezzaniti, and G. R. Gerhart, “2-cam LWIR imaging Stokes polarimeter,” Proc. SPIE 6972, 69720K (2008). [CrossRef]
  26. M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Microbolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48(6), 063201 (2009). [CrossRef]
  27. L. Young, L. A. Robinson, and C. A. Hacking, “Meander-line Polarizer,” IEEE Trans. Antenn. Propag. 21(3), 376–378 (1973). [CrossRef]
  28. R.-S. Chu and K.-M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antenn. Propag. 35(6), 652–661 (1987). [CrossRef]
  29. B. A. Munk, Finite Antenna Arrays and FSS, (Wiley, Hoboken, NJ, 2003).
  30. C. Terret, J. R. Levrel, and K. Mahdjoubi, “Susceptance computation of a meander-line polarizer layer,” IEEE Trans. Antenn. Propag. 32(9), 1007–1011 (1984). [CrossRef]
  31. A. K. Bhattacharyya and T. J. Chwalek, “Analysis of multilayer meanderline polarizer,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 7(6), 442–454 (1998).
  32. Z. Knittl, Optics of thin films; an optical multilayer theory, (Wiley, New York, NY, 1976). [PubMed]
  33. H. A. Macleod, Thin-film optical filters, (American Elsevier, New York, NY, 1969).
  34. P. A. Rizzi, Microwave Engineering: Passive Circuits, (Prentice-Hall, Upper Saddle River, NJ, 1988).
  35. K. K. Chan, T. W. Ang, T. H. Chao, and T. S. Yeo, “Accurate analysis of meanderline polarizers with finite thicknesses using mode matching,” IEEE Trans. Antenn. Propag. 56(11), 3580–3585 (2008). [CrossRef]
  36. E. D. Palik, Handbook of optical constants of solids, vol. III., (Academic, San Diego, CA, 1997).
  37. P. Garrou, “Polymer dielectrics for multichip module packaging,” Proc. IEEE 80(12), 1942–1954 (1992). [CrossRef]
  38. W. R. Folks, J. C. Ginn, D. J. Shelton, J. S. Tharp, and G. D. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Status Solidi 5(5), 1113–1116 (2008) (c). [CrossRef]
  39. J. S. Tharp, D. J. Shelton, S. L. Wadsworth, and G. D. Boreman, “Electron-beam lithography of multiple-layer submicrometer periodic arrays on a barium fluoride substrate,” J. Vac. Sci. Technol. B 26(5), 1821–1823 (2008). [CrossRef]
  40. D. Goldstein, Polarized Light 2nd Ed., (Marcel Dekker, New York, NY, 2003).
  41. J. E. Raynolds, B. A. Munk, J. B. Pryor, and R. J. Marhefka, “Ohmic loss in frequency-selective surfaces,” J. Appl. Phys. 93(9), 5346–5358 (2003). [CrossRef]
  42. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge, New York, NY, 1995).
  43. D. F. Bezuidenhout, K. D. Clarke, and R. Pretorius, “The optical properties of YF3 films,” Thin Solid Films 155(1), 17–30 (1987). [CrossRef]
  44. J. Y. Robic, B. Rolland, J. C. Deutsch, and P. Gallais, “Ion-assisted deposition of yttrium fluoride as a substitute for thorium fluoride: Application to infrared anti-reflection coating on germanium,” Proc. SPIE 2253, 552–558 (1994). [CrossRef]
  45. V. K. Arora, “Quantum size effect in thin-wire transport,” Phys. Rev. B 23(10), 5611–5612 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited