OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13385–13395

Dark pulse quantum dot diode laser

Mingming Feng, Kevin L. Silverman, Richard P. Mirin, and Steven T. Cundiff  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13385-13395 (2010)
http://dx.doi.org/10.1364/OE.18.013385


View Full Text Article

Enhanced HTML    Acrobat PDF (964 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe an operating regime for passively mode-locked quantum dot diode laser where the output consists of a train of dark pulses, i.e., intensity dips on a continuous background. We show that a dark pulse train is a solution to the master equation for mode-locked lasers. Using simulations, we study stability of the dark pulses and show they are consistent with the experimental results.

© 2010 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 23, 2010
Revised Manuscript: May 22, 2010
Manuscript Accepted: May 25, 2010
Published: June 7, 2010

Citation
Mingming Feng, Kevin L. Silverman, Richard P. Mirin, and Steven T. Cundiff, "Dark pulse quantum dot diode laser," Opt. Express 18, 13385-13395 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13385


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Weiner, Ultrafast Optics (Wiley, 2009).
  2. J.-C. Diels, and W. Rudolp, Ultrashort Laser Pulse Phenomena (Academic Press, 2006) 2nd ed.
  3. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, (Oxford University Press, 1995).
  4. S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16(7), 4639–4664 (2008). [CrossRef] [PubMed]
  5. C. Dorrer, “High-speed measurements for optical telecommunication systems,” IEEE J. Sel. Top. Quantum Electron. 12(4), 843–858 (2006). [CrossRef]
  6. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003). [CrossRef]
  7. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009). [CrossRef]
  8. Y. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298(2-3), 81–197 (1998). [CrossRef]
  9. M. Nakazawa and K. Suzuki, “Generation of a pseudorandom dark soliton data train and its coherent detection by one-bit-shifting with a mach-zehnder interferometer,” Electron. Lett. 31(13), 1084–1085 (1995). [CrossRef]
  10. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “Experimental demonstration of 100ghz dark soliton generation and propagation using a dispersion decreasing fiber,” Electron. Lett. 30(16), 1326–1327 (1994). [CrossRef]
  11. O. G. Okhotnikov and F. M. Araujo, “Pulse generation through optical switching in phase driven loop mirror,” Electron. Lett. 31(25), 2197–2198 (1995). [CrossRef]
  12. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, “Experimental observation of the fundamental dark soliton in optical fibers,” Phys. Rev. Lett. 61(21), 2445–2448 (1988). [CrossRef] [PubMed]
  13. M. Haelterman and P. Emplit, “Optical dark soliton trains generated by passive spectral filtering technique,” Electron. Lett. 29(4), 356–357 (1993). [CrossRef]
  14. P. Emplit, M. Haelterman, R. Kashyap, and M. DeLathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett. 9(8), 1122–1124 (1997). [CrossRef]
  15. D. M. Pataca, M. L. Rocha, R. Kashyap, and K. Smith, “Bright and dark pulse generation in an optically modelocked fiber laser at 1.3 μm,” Electron. Lett. 31(1), 35–36 (1995). [CrossRef]
  16. M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: Dark pulse formation,” Appl. Phys. Lett. 72(13), 1626–1628 (1998). [CrossRef]
  17. J. Zimmermann, S. T. Cundiff, G. von Plessen, J. Feldmann, M. Arzberger, G. Bohm, M. C. Amann, and G. Abstreiter, “Dark pulse formation in a quantum-dot laser,” Appl. Phys. Lett. 79(1), 18–20 (2001). [CrossRef]
  18. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A 80(4), 045803 (2009). [CrossRef]
  19. H. A. Haus, “Theory of mode-locking with a fast saturable absorber,” J. Appl. Phys. 46(7), 3049–3058 (1975). [CrossRef]
  20. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  21. M. van der Poel and J. M. Hvam, “Ultrafast dynamics of quantum-dot semiconductor optical amplifiers,” J. Mater. Sci. Mater. Electron. 18(S1), 51–55 (2007). [CrossRef]
  22. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, “Mode-locking ultrafast solid-state lasers with saturable Bragg reflectors,” IEEE J. Sel. Top. Quantum Electron. 2(3), 454–464 (1996). [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, 1986)
  24. J.-C. Diels, and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edition, (Academic Press, 2006)
  25. H. A. Haus, “Parameter ranges for CW passive mode-locking,” IEEE J. Quantum Electron. 12(3), 169–176 (1976). [CrossRef]
  26. F. X. Kärtner, J. A. D. Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998). [CrossRef]
  27. K. L. Silverman, R. P. Mirin, S. T. Cundiff, and A. G. Norman, “Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots,” Appl. Phys. Lett. 82(25), 4552–4554 (2003). [CrossRef]
  28. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27(7), 482–484 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (558 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited