OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13396–13401

Plasmonic electromagnetically-induced transparency in symmetric structures

Xingri Jin, Yuehui Lu, Haiyu Zheng, YoungPak Lee, Joo Yull Rhee, and Won Ho Jang  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13396-13401 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1611 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A broken symmetry is generally believed to be a prerequisite for plasmonic electromagnetically-induced transparency (EIT), since the asymmetry allows the excitation of the otherwise forbidden dark mode. Nevertheless, according to the picture of magnetic plasmon resonance (MPR)-mediated plasmonic EIT, we show that plasmonic EIT can be achieved even in symmetric structures, provided that we take into account the plasmonic modes beyond the fundamental ones. This not only sharpens our understanding of the existing concept, but also provides a profound insight into the plasmonic coherent interference in the near-field zone.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: April 27, 2010
Revised Manuscript: June 4, 2010
Manuscript Accepted: June 4, 2010
Published: June 7, 2010

Yuehui Lu, Xingri Jin, Haiyu Zheng, YoungPak Lee, Joo Yull Rhee, and Won Ho Jang, "Plasmonic electromagnetically-induced transparency in symmetric structures," Opt. Express 18, 13396-13401 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. . K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593 (1991). [CrossRef] [PubMed]
  2. . S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36 (1997). [CrossRef]
  3. . M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005). [CrossRef]
  4. . M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232 (2000). [CrossRef] [PubMed]
  5. . S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611 (1999). [CrossRef]
  6. . L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomicgas,” Nature (London) 397, 594 (1999). [CrossRef]
  7. . C. L. G. Alzer, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37 (2002). [CrossRef]
  8. . T. Opatrný and D.-G. Welsch, “Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency,” Phys. Rev. A 64, 023805 (2001). [CrossRef]
  9. . D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  10. . A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]
  11. . L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko,“Tunable delay line with interacting whisperinggallery-mode resonators,” Opt. Lett. 29, 626 (2004). [CrossRef] [PubMed]
  12. . Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  13. . S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  14. . H. Xu, and B. S. Ham, “Plasmon-induced photonic switching in a metamaterial,” arXiv:0905.3102v4 [quant-ph].
  15. . Y. Lu, H. Xu, N. T. Tung, J. Y. Rhee, W. H. Jang, B. S. Ham, and Y. P. Lee, “Role of magnetic plasmon resonance in plasmonic electromagnetically-induced transparency,” arXiv:0906.4029v4 [cond-mat.mtrl-sci].
  16. . N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758 (2009). [CrossRef]
  17. . X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, “Plasmonic interferences and optical modulations in dark-bringt-dark plasmon resonators,” Appl. Phys. Lett. 96, 043113 (2010). [CrossRef]
  18. . N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  19. . N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]
  20. . P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  21. . P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595 (2009). [CrossRef] [PubMed]
  22. . R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]
  23. . V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009). [CrossRef]
  24. . E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003). [CrossRef] [PubMed]
  25. . F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008). [CrossRef] [PubMed]
  26. . G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892 (2006). [CrossRef] [PubMed]
  27. . S. Zhang, W. J. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Demonstration of metaldielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434 (2006). [CrossRef]
  28. . L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  29. . S. A. Maier, “The benefits of darkness,” Nature Mater. 8, 699 (2009). [CrossRef]
  30. . A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, “Multiple plasmon resonances from gold nanostructures,” Appl. Phys. Lett. 90, 143105 (2007). [CrossRef]
  31. . M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326, 550 (2009). [CrossRef] [PubMed]
  32. . T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited