OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13402–13406

Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope

Satoshi Kogure, Keiichi Inoue, Tsutomu Ohmori, Miya Ishihara, Makoto Kikuchi, Masaaki Fujii, and Makoto Sakai  »View Author Affiliations


Optics Express, Vol. 18, Issue 13, pp. 13402-13406 (2010)
http://dx.doi.org/10.1364/OE.18.013402


View Full Text Article

Enhanced HTML    Acrobat PDF (1148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We performed infrared (IR) spectroscopic imaging of molecular species in cultured cell interiors of A549 cells using in-house developed vibrational sum-frequency generation detected IR super-resolution microscope. The spatial resolution of this IR microscope was approximately 1.1 µm, which exceeds the diffraction limit of IR light. Therefore, we clearly observed differences in the signal intensity at various IR wavelengths which appear to originate from the differing IR absorptions of specific vibrational modes, and reveal the distribution of molecular species in the single cell. These results were never imaged with the conventional IR microscope.

© 2010 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(110.3080) Imaging systems : Infrared imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(170.1530) Medical optics and biotechnology : Cell analysis
(320.5390) Ultrafast optics : Picosecond phenomena
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: April 27, 2010
Revised Manuscript: May 27, 2010
Manuscript Accepted: May 31, 2010
Published: June 7, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Satoshi Kogure, Keiichi Inoue, Tsutomu Ohmori, Miya Ishihara, Makoto Kikuchi, Masaaki Fujii, and Makoto Sakai, "Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope," Opt. Express 18, 13402-13406 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-13-13402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Heraud, S. Caine, N. Campanale, T. Karnezis, D. McNaughton, B. R. Wood, M. J. Tobin, and C. C. A. Bernard, “Early detection of the chemical changes occurring during the induction and prevention of autoimmune-mediated demyelination detected by FT-IR imaging,” Neuroimage 49(2), 1180–1189 (2010). [CrossRef]
  2. Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005). [CrossRef]
  3. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-detected coherent anti-stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001). [CrossRef]
  4. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006). [CrossRef] [PubMed]
  5. H.-W. Wang, T. T. Le, and J.-X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008). [CrossRef]
  6. P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006). [CrossRef] [PubMed]
  7. H. Fabian, N. A. N. Thi, M. Eiden, P. Lasch, J. Schmitt, and D. Naumann, “Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy,” Biochim. Biophys. Acta 1758(7), 874–882 (2006). [CrossRef] [PubMed]
  8. Y. R. Shen, The principles of nonlinear optics (John Wiley & Sons, New York, 1984).
  9. C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97(39), 10064–10069 (1993). [CrossRef]
  10. Y. Goto, N. Akamatsu, K. Domen, and C. Hirose, “Vibration-induced order-disorder transitions in a Langmuir-Blodgett film as investigated by vibrational sum-frequency generation spectroscopy,” J. Phys. Chem. 99(12), 4086–4090 (1995). [CrossRef]
  11. N. Akamatsu, K. Domen, C. Hirose, T. Onishi, H. Shimizu, and K. Masutani, “SFG study of rotational anisotropy of cadmium arachidate Langmuir-Blodgett films,” Chem. Phys. Lett. 181(2-3), 175–178 (1991). [CrossRef]
  12. R. W. Boyd, Nonlinear optics, 2nd ed. (Academic Press, San Diego 2003)
  13. N. Ji, K. Zhang, H. Yang, and Y. R. Shen, “Three-dimensional chiral imaging by sum-frequency generation,” J. Am. Chem. Soc. 128(11), 3482–3483 (2006). [CrossRef] [PubMed]
  14. K. Inoue, M. Fujii, and M. Sakai, “Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cells,” Appl. Spectrosc. 64(3), 275–281 (2010). [CrossRef] [PubMed]
  15. K. Inoue, N. Bokor, S. Kogure, M. Fujii, and M. Sakai, “Two-point-separation in a sub-micron nonscanning IR super-resolution microscope based on transient fluorescence detected IR spectroscopy,” Opt. Express 17(14), 12013–12018 (2009). [CrossRef] [PubMed]
  16. C. J. Pouchert, The Aldrich library of infrared spectra (Aldrich Chemical Co., Milwaukee, 1970)
  17. G. Mizutani, T. Koyama, S. Tomizawa, and H. Sano, “Distinction between some saccharides in scattered optical sum frequency intensity images,” Spectrochim. Acta [A] 62(4-5), 845–849 (2005). [CrossRef]
  18. Y. Miyauchi, H. Sano, and G. Mizutani, “Selective observation of starch in a water plant using optical sum-frequency microscopy,” J. Opt. Soc. Am. A 23(7), 1687–1690 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited