OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13418–13424

Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer

Jeong Su Yang, Jun-Ho Sung, and Beom-Hoan O  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13418-13424 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical transmission spectra of several samples of gold nanoparticle layers were examined using a modified Drude model proposed with a novel elastic scattering parameter, γ′. Although the measured transmission spectra deviated from the simple calculation from Mie scattering, it was explained well by the modified model assuming elastic and inelastic scattering in the form of the collision frequency of free electrons within a metal particle due to the particle boundary. The particle-size and inter-particle-distance dependences of γ′ were extracted within the framework of the proposed model from the curve of best fit of the transmittance spectra.

© 2010 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(260.3910) Physical optics : Metal optics
(350.4990) Other areas of optics : Particles

ToC Category:

Original Manuscript: April 30, 2010
Revised Manuscript: May 31, 2010
Manuscript Accepted: June 3, 2010
Published: June 7, 2010

Jeong Su Yang, Jun-Ho Sung, and Beom-Hoan O, "Novel elastic scattering model for the understanding of the Anomalous transmittance for Au nanoparticle layer," Opt. Express 18, 13418-13424 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanopartice chain arrays below the diffraction limit,” Phys. Rev. B 62(24), R16356–R16359 (2000). [CrossRef]
  3. G. Raschke, S. Kowarik, T. Franzl,, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger “Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering,” Nano Lett. 3(7), 935–938 (2003). [CrossRef]
  4. J. Vučković, M. Lončar, and A. Scherer, “Surface Plasmon Enhanced Light-Emitting Diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000). [CrossRef]
  5. J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and B. H. O, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009). [CrossRef]
  6. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  7. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006). [CrossRef]
  8. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005). [CrossRef] [PubMed]
  9. M. Théye, “Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films,” Phys. Rev. B 2(8), 3060–3078 (1970). [CrossRef]
  10. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, “Optical properties of Au: Sample effects,” Phys. Rev. B 21(8), 3290–3299 (1980). [CrossRef]
  11. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  12. H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128(4), 1622–1629 (1962). [CrossRef]
  13. H. Inouye, K. Tanaka, I. Tanahashi, and K. Hirao, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57(18), 11334–11340 (1998). [CrossRef]
  14. L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006). [CrossRef]
  15. U. Kreibig, “Electronic properties of small silver particles: the optical constants and their temperature dependence,” J. Phys. F Met. Phys. 4(7), 999–1014 (1974). [CrossRef]
  16. D. Dalacu and L. Martinu, “Optical properties of discontinuous gold films: finite size effects,” J. Opt. Soc. Am. B 18(1), 85–92 (2001). [CrossRef]
  17. S. Link and M. A. El-Sayed, “Size and Temperature Dependence of the Plasmon Absorption of Colloidal Nanoparticles,” J. Phys. Chem. B 103(21), 4212–4217 (1999). [CrossRef]
  18. E. R. Encina and E. A. Coronado, “Resonance conditions for Multipole Plasmon Excitations in Noble Metal Nanorods,” J. Phys. Chem. C 111(45), 16796–16801 (2007). [CrossRef]
  19. R. E. Hetrick and J. Lambe, “Optical properties of small In particles in thin-film form,” Phys. Rev. B 11(4), 1273–1278 (1975). [CrossRef]
  20. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16(8), 3513–3534 (1977). [CrossRef]
  21. M. Xu and J. Dignam, “A new approach to the surface plasmon resonance of small metal particles,” J. Chem. Phys. 96(5), 3370–3378 (1992). [CrossRef]
  22. K. Fuchs and N. F. Mott, “The conductivity of Thin Metallic Films according to the Electron Theory of Metals,” Proc. Camb. Philos. Soc. 34(01), 100 (1938); E. H. Sondheimer, “The Mean Free Path of Electrons in Metals,” Adv. Phys. 1(1), 1–42 (1952). [CrossRef]
  23. J. S. Yang, S. G. Lee, S. G. Park, E. H. Lee, and B. H. O, “Drude Model for the Optical Properties of a Nano-Scale Thin Metal film Revisited,” J. Korean Phys. Soc. 55(6), 2552–2555 (2009). [CrossRef]
  24. G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82(22), 3811–3813 (2003). [CrossRef]
  25. C. Kittel, Introduction to Solid State Physics, (John Wiley & Sons Inc., 2005).
  26. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited