OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13451–13467

Continuous adaptive beam pointing and tracking for laser power transmission

Christian A. Schäfer  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13451-13467 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The adaptive beam pointing concept has been revisited for the purpose of controlled transmission of laser energy from an optical transmitter to a target. After illumination, a bidirectional link is established by a retro-reflector on the target and an amplifier-phase conjugate mirror (A-PCM) on the transmitter. By setting the retro-reflector’s aperture smaller than the diffraction limited spot size but big enough to provide sufficient amount of optical feedback, a stable link can be maintained and light that hits the retro-reflector’s surrounded area can simultaneously be reconverted into usable electric energy. The phase conjugate feedback ensures that amplifier’s distortions are compensated and the target tracked accurately. After deriving basic arithmetic expressions for the proposed system, a section is devoted for the motivation of free-space laser power transmission which is supposed to find varied applicability in space. As an example, power transmission from a satellite to the earth is described where recently proposed solar power generating structures on high-altitudes receive the power above the clouds to provide constant energy supply. In the experimental part, an A-PCM setup with reflectivity of about RA-PCM = 100 was realized using a semiconductor optical amplifier and a photorefractive self-pumped PCM. Simulation results show that a reflectivity of RA-PCM>1000 could be obtained by improving the self-pumped PCM’s efficiency. That would lead to a transmission efficiency of η>90%.

© 2010 OSA

OCIS Codes
(070.5040) Fourier optics and signal processing : Phase conjugation
(260.2160) Physical optics : Energy transfer
(230.4480) Optical devices : Optical amplifiers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 26, 2010
Revised Manuscript: May 31, 2010
Manuscript Accepted: May 31, 2010
Published: June 8, 2010

Christian A. Schäfer, "Continuous adaptive beam pointing and tracking for laser power transmission," Opt. Express 18, 13451-13467 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Tesla, “The transmission of electrical energy without wires,” Elec. World Eng. 35, 429–431 (1904).
  2. R. M. Dickinson, “Performance of a High-Power, 2.388-GHz Receiving Array in Wireless Power Transmission Over 1.54 km,” MTT-S Int. Microwave Symp. Digest 76, 139–141 (1976). [CrossRef]
  3. W. C. Brown, “The technology and application of free-space power transmission by microwave beam,” Proc. IEEE 62(1), 11–25 (1974). [CrossRef]
  4. M. Röger, G. Böttger, M. Dreschmann, C. Klamouris, M. Huebner, A. W. Bett, J. Becker, W. Freude, and J. Leuthold, “Optically powered fiber networks,” Opt. Express 16(26), 21821–21834 (2008). [CrossRef] [PubMed]
  5. H. Miyakawa, Y. Tanaka, and T. Kurokawa, “Design approaches to power-over-optical local-area-network systems,” Appl. Opt. 43(6), 1379-1389 (2004). [CrossRef] [PubMed]
  6. A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications (Springer, 2008).
  7. P. E. Glaser, “Power from the Sun: Its Future,” Science 162(3856), 857–861 (1968). [CrossRef] [PubMed]
  8. J. C. Mankins, “A fresh look at space solar power: New architectures, concepts and technologies,” Acta Astronaut. 41(4-10), 347–359 (1997). [CrossRef]
  9. R. L. Fork, “High Energy lasers may put power in space,” Laser Focus World 37, 113–117 (2001).
  10. M. Smith, R. L. Fork, and S. Cole, “Safe delivery of optical power from space,” Opt. Express 8(10), 537–546 (2001). [CrossRef] [PubMed]
  11. Znamya space mirror, e.g. V. Syromiatnikov, “Znamya-2 demonstration flight experiment,” http://src.space.ru/page_30e.htm .
  12. G. S. Aglietti, S. Redi, A. R. Tatnall, and T. Markvart, “Harnessing High-Altitude Solar Power,” IEEE J. Energy Conversion 24(2), 442–451 (2009). [CrossRef]
  13. N. Kawashima, “The Importance of Development of a Rover for the Direct Confirmation of the Existence of Ice on the Moon,” Trans. Jpn. Soc. Aeronaut. Space Sci. 43(139), 34–35 (2000). [CrossRef]
  14. G. Landis, “Satellite eclipse power by laser illumination,” Acta Astronaut. 25(4), 229–233 (1991). [CrossRef]
  15. G. A. Landis, and M. Stavnes, S., Oleson, and J. Bozek, “Space Transfer with Ground-based Laser / Electric Propulsion,” presented at the AIAA-92–3213: Laser Power Beaming 1992, Nashville, TN (United States), 6–8 Jul 1992.
  16. G. A. Landis, “Moonbase Night Power by Laser Illumination,” AIAA J. Propulsion and Power 8(1), 251–254 (1992). [CrossRef]
  17. F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, “Method and apparatus for transmitting energy via a laser beam,” European Patent 1566902 (2005), US Patent 7423767 (2008).
  18. A. Erteza, “Boresighting a Gaussian beam on a specular target point: a method using conical scan,” Appl. Opt. 15(3), 656–660 (1976). [CrossRef] [PubMed]
  19. I. Buske and W. Riede, “Sub-µrad laser beam tracking,” Proc. SPIE 6397, 63970J (2006). [CrossRef]
  20. F. Steinsiek, W. P. Foth, K. H. Weber, C. A. Schäfer, and H. J. Foth, “Wireless power transmission experiments an early contribution to planetary exploration missions,” in Proc. 54th International Astronautical Congress, Bremen, Germany, 29 Sept.–4 Oct. 2003, Paper IAC-03-R.3.06.
  21. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2(1), 4–6 (1978). [CrossRef] [PubMed]
  22. P. S. Lebow and J. R. Ackerman, “Phase conjugation through Brillouin-enhanced four-wave mixing over an extended atmospheric path,” Opt. Lett. 14(4), 236–238 (1989). [CrossRef] [PubMed]
  23. H. Bruesselbach, D. C. Jones, D. A. Rockwell, R. C. Lind, and G. Vogel, “Real-time atmospheric compensation by stimulated Brillouin-scattering phase conjugation,” J. Opt. Soc. Am. B 12(8), 1434–1447 (1995). [CrossRef]
  24. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical Phased Array Technology,” Proc. IEEE 84(2), 268–298 (1996). [CrossRef]
  25. C. A. Schäfer, O. Matoba, and N. Kaya, “Tracking system by phase conjugation for laser energy transmission,” Proc. SPIE 6454, 64540A (2007). [CrossRef]
  26. R. Pascotta, “Encyclopedia of Laser Physics and Technology-Beam Quality,” http://www.rp-photonics.com/beam_quality.html .
  27. E. Jakeman and K. D. Ridley, “Incomplete phase conjugation through a random-phase screen. I. Theory,” J. Opt. Soc. Am. A 13(11), 2279–2287 (1996). [CrossRef]
  28. R. Pascotta, “Encyclopedia of Laser Physics and Technology-Laser Diodes,” http://www.rp-photonics.com/laser_diodes.html .
  29. e.g. “ EksmaOptics,” http://www.eksmaoptics.com/en , or “Jenoptik,” http://www.jold.com .
  30. S. van Riesen, U. Schubert, and A. W. Bett, “GaAs photovoltaic cells for laser power beaming at high power densities,” in Proc. 17th Eur. PV Solar Energy Conf., Munich, Germany, 2001, 18−21, Paper VA1/26.
  31. D. Krut, “PV Devices for Laser Power Conversion,” presented at the International Workshop on the Laser Energy Transmission for Space Exploration and Ground Applications, Nara, Japan 6.-7. Jun. 2004.
  32. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (Version 34),” Prog. Photovolt. Res. Appl. 17(5), 320–326 (2009). [CrossRef]
  33. ASTM International, Designation G173–03e1, Standard tables for reference solar spectral irradiance: direct normal and hemispherical 37° tilted surface (2006).
  34. O. Graydon, “Solar power: A sunny solution,” Nat. Photonics 1(9), 495–496 (2007). [CrossRef]
  35. R. M. Dickenson, “Wireless Power Transmission Technology State of the Art,” Acta Astronaut. 53(4-10), 561–570 (2003). [CrossRef]
  36. K. Reed and H. J. Willenberg, “Early commercial demonstration of space solar power using ultra-lightweight arrays,” Acta Astronaut. 65(9-10), 1250–1260 (2009). [CrossRef]
  37. T. Omatsu, Y. Ojima, B. A. Thompson, A. Minassian, and M. J. Damzen, “150-times phase conjugation by degenerate fourwave mixing in a continuous-wave Nd:YVO4 amplifier,” Appl. Phys. B 75(4-5), 493–495 (2002). [CrossRef]
  38. T. Omatsu and M. J. Damzen, “Multi-watt CW output from a double-pass diode side-pumped Nd:YVO4 amplifier with a Rh:BaTiO3 phase conjugator,” Opt. Commun. 198(1-3), 135–139 (2001). [CrossRef]
  39. Y. A. Zakharenkov, T. O. Clatterbuck, V. V. Shkunov, A. A. Betin, D. M. Filgas, E. P. Ostby, F. P. Strohkendl, D. A. Rockwell, and R. S. Baltimore, “2-kW Average Power CW Phase-Conjugate Solid-State Laser,” IEEE J. Sel. Top. Quantum Electron. 13(3), 473–479 (2007). [CrossRef]
  40. e.g. M. Summerfield, “Optical Amplifiers (Semiconductor),” in Encyclopedia of Physical Science and Technology, R. A. Meyers, eds. (Elsevier Science Ltd. 2004), pp.219–235.
  41. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).
  42. A. Minassian, G. J. Crofts, and M. J. Damzen, “A tunable self-pumped phase-conjugate laser using Ti:sapphire slab amplifiers,” Opt. Commun. 161(4-6), 338–344 (1999). [CrossRef]
  43. N. Huot, J.-M. C. Jonathan, and G. Roosen, “Dynamic Wavefront Correction of Nd:YAG Lasers by Self Pumped Phase Conjugation in Photorefractive BaTiO3:Rh,” Proc. IEEE 87(12), 2059–2073 (1999). [CrossRef]
  44. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20(1), 12–30 (1984). [CrossRef]
  45. X. Yi and P. Yeh, “Effect of partial coherence on phase conjugation,” Opt. Commun. 147(1-3), 126–130 (1998). [CrossRef]
  46. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Wavelength dependence of visible and near-infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22(11), 2459–2467 (2005). [CrossRef]
  47. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7(10), 486–488 (1982). [CrossRef] [PubMed]
  48. M. Cronin‐Golomb, B. Fischer, J. O. White, and A. Yariv, “Passive phase conjugate mirror based on self‐induced oscillation in an optical ring cavity,” Appl. Phys. Lett. 42(11), 919–921 (1983). [CrossRef]
  49. B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, “Spectroscopic and photorefractive properties of infrared-sensitive rhodium-doped barium titanate,” Opt. Lett. 19(8), 536–538 (1994). [CrossRef] [PubMed]
  50. G. W. Ross and R. W. Eason, “Highly efficient self-pumped phase conjugation at near-infrared wavelengths by using nominally undoped BaTiO(3),” Opt. Lett. 17(16), 1104–1106 (1992). [CrossRef] [PubMed]
  51. I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Enhanced photorefractive properties of Bi-doped Sn2P2S6,” J. Opt. Soc. Am. B 25(2), 180–186 (2008). [CrossRef]
  52. T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications,” Appl. Opt. 44(30), 6388–6401 (2005). [CrossRef] [PubMed]
  53. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in `blue' BaTiO3,” Opt. Commun. 101(1-2), 60–64 (1993). [CrossRef]
  54. T. Omatsu, A. Minassian, and M. J. Damzen, “High Quality 7.5 W Continuous-Wave Operation of a Nd:YVO4 Laser with a Rh:BaTiO3 Phase Conjugate Mirror,” Jpn. J. Appl. Phys. 41(Part 1, No. 4A), 2024–2027 (2002). [CrossRef]
  55. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966). [CrossRef] [PubMed]
  56. D. Udaiyan, G. J. Crofts, T. Omatsu, and M. J. Damzen, “Self-consistent spatial mode analysis of self-adaptive laser oscillators,” J. Opt. Soc. Am. B 15(4), 1346–1352 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited