OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 13 — Jun. 21, 2010
  • pp: 13478–13491

Assessment of the use of a diffuser in propagation-based x-ray phase contrast imaging

S. C. Irvine, K. S. Morgan, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu  »View Author Affiliations

Optics Express, Vol. 18, Issue 13, pp. 13478-13491 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (14875 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rotating random-phase-screen diffuser is sometimes employed on synchrotron x-ray imaging beamlines to ameliorate field-of-view inhomogeneities due to electron-beam instabilities and beamline optics phase artifacts. The ideal result is a broader, more uniformly illuminated beam intensity for cleaner coherent x-ray images. The spinning diffuser may be modeled as an ensemble of transversely random thin phase screens, with the resulting set of intensity maps over the detector plane being incoherently averaged over the ensemble. Whilst the coherence width associated with the source is unaffected by the diffuser, the magnitude of the complex degree of second-order coherence may be significantly reduced [K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, Opt. Commun. 283, 216 (2010)]. Through use of a computational model and experimental data obtained on x-ray beamline BL20XU at SPring-8, Japan, we investigate the effects of such a diffuser on the quality of Fresnel diffraction fringes in propagation-based x-ray phase contrast imaging. We show that careful choice of diffuser characteristics such as thickness and fiber size, together with appropriate placement of the diffuser, can result in the ideal scenario of negligible reduction in fringe contrast whilst the desired diffusing properties are retained.

© 2010 OSA

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(110.4980) Imaging systems : Partial coherence in imaging
(110.7440) Imaging systems : X-ray imaging
(230.1980) Optical devices : Diffusers
(340.7440) X-ray optics : X-ray imaging

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 19, 2010
Manuscript Accepted: April 30, 2010
Published: June 8, 2010

S. C. Irvine, K. S. Morgan, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, "Assessment of the use of a diffuser in propagation-based x-ray phase contrast imaging," Opt. Express 18, 13478-13491 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Morgan, S. C. Irvine, Y. Suzuki, K. Uesugi, A. Takeuchi, D. M. Paganin, and K. K. W. Siu, “Measurement of hard x-ray coherence in the presence of a rotating random-phase-screen diffuser,” Opt. Commun. 283(2), 216–225 (2010). [CrossRef]
  2. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66(12), 5486–5492 (1995). [CrossRef]
  3. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29(1), 133–146 (1996). [CrossRef]
  4. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996). [CrossRef]
  5. T. E. Gureyev, S. C. Mayo, D. E. Myers, Y. Nesterets, D. M. Paganin, A. Pogany, A. W. Stevenson, and S. W. Wilkins, “Refracting Röntgen's rays: Propagation-based x-ray phase contrast for biomedical imaging,” J. Appl. Phys. 105(10), 102005–102012 (2009). [CrossRef]
  6. S. C. Irvine, D. M. Paganin, S. Dubsky, R. A. Lewis, and A. Fouras, “Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle,” Appl. Phys. Lett. 93(15), 153901 (2008). [CrossRef]
  7. S. C. Irvine, D. M. Paganin, A. Jamison, S. Dubsky, and A. Fouras, “Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle,” Opt. Express 18, 2368-2379 (2010). [CrossRef] [PubMed]
  8. J. M. Cowley, Diffraction physics (third edition) (Amsterdam: North-Holland Publication, and New York: Elsevier Publication Co., 1995).
  9. D. L. White, O. R. Wood, J. E. Bjorkholm, S. Spector, A. A. MacDowell, and B. LaFontaine, “Modification of the coherence of undulator radiation,” Rev. Sci. Instrum. 66(2), 1930 (1995). [CrossRef]
  10. R. A. Lewis, “Medical phase contrast x-ray imaging: current status and future prospects,” Phys. Med. Biol. 49(16), 3573–3583 (2004). [CrossRef] [PubMed]
  11. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, New York, 2007).
  12. L. Mandel, and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ Pr, Cambridge, 1995).
  13. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68(7), 2774–2782 (1997). [CrossRef]
  14. Ya. I. Nesterets, “On the origins of decoherence and extinction contrast in phase-contrast imaging,” Opt. Commun. 281(4), 533–542 (2008). [CrossRef]
  15. K. A. Nugent, C. Q. Tran, and A. Roberts, “Coherence transport through imperfect x-ray optical systems,” Opt. Express 11(19), 2323–2328 (2003). [CrossRef] [PubMed]
  16. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231(1-6), 53–70 (2004). [CrossRef]
  17. K. K. W. Siu, K. S. Morgan, D. M. Paganin, R. Boucher, K. Uesugi, N. Yagi, and D. W. Parsons, “Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease,” Eur. J. Radiol. 68(3Suppl), S22–S26 (2008). [CrossRef] [PubMed]
  18. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, New York, 2006).
  19. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  20. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, Cambridge Greenwood Village, 2007).
  21. VPAC, “Victorian Partnership for Advanced Computing,” (2010), http://www.vpac.org/ .
  22. A. Barty, “Quantitative Phase-Amplitude Microscopy, PhD Thesis,” (University of Melbourne, Melbourne, 1999).
  23. W. Leitenberger, H. Wendrock, L. Bischoff, and T. Weitkamp, “Pinhole interferometry with coherent hard X-rays,” J. Synchrotron Radiat. 11(2), 190–197 (2004). [CrossRef] [PubMed]
  24. A. A. Michelson, Studies in Optics (University of Chicago Press, Chicago, 1927).
  25. M. Born and E. Wolf, Principles of optics (Cambridge University Press, Cambridge, 1999).
  26. P. H. van Cittert, “Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene,” Physica 1(1-6), 201–210 (1934). [CrossRef]
  27. P. H. van Cittert, “Kohaerenz-probleme,” Physica 6(7-12), 1129–1138 (1939). [CrossRef]
  28. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 5(8), 785–795 (1938). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (7898 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited